Poster Presentations

[MS19-P05] Geometries of Hexanuclear Rhenium Clusters
Marta S. Krawczyk, Monika K. Krawczyk, Miłosz Siczek, Tadeusz Lis

Faculty of Chemistry, University of Wroctaw, F. Joliot-Curie 14 St., 50-383 Wroctaw, Poland E-mail: marta.krawczyk@chem.uni.wroc.pl

Science Center (Grant NCN UMO-2011/03/N/ ST5/04844)
[1] Gray, T. G. (2003). Coord. Chem. Rev. 243, 213-235.

Keywords: rhenium complexes, octahedral clusters, geometry

So far, the hexanuclear rhenium clusters have been known to adopt two kinds of geometry: one described as rhenium octahedron included in a cube built up from eight bridging $\mu 3$-ligands and the second one, where rhenium atoms are arranged in a trigonal prism bridged by two $\mu 3$ and six μ-ligands (Fig. 1a,b). In the first case the core of octahedral rhenium clusters have $\left[\operatorname{Re}_{6}\left({ }_{\mu 3}\right.\right.$ $\mathrm{Q})_{8-\mathrm{n}}\left({ }_{\mu 3}-\mathrm{X}\right)_{6+\mathrm{n}} \mathrm{n}^{\mathrm{n}-4}$ stoichiometry, where $\mathrm{Q}=\mathrm{S}$, Se, $\mathrm{Te} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, while the second type of geometry is observed for clusters of the formula $\left[\operatorname{Re}_{6}(\mu-\right.$ $\mathrm{Br})_{6}\left({ }_{\mu 3}-\mathrm{Br}_{2} \mathrm{Br}_{6}\right]^{-}[1]$. Our recent research proved that octahedral rhenium clusters can also adopt another kind of geometry, where rhenium atoms are bridged by μ-ligands only (Fig. 1c).
Fig. 1. Three kinds of geometry observed in hexanuclear rhenium clusters.

(a)
a)

(c)

