Poster Presentations

[MS20-P01] Polymorphism peculiarities in Bi2W1-xMexO6-y and Bi2Mo1-xMexO6-y Systems (Me = Nb, Ta, Sb).

<u>E.P. Kharitonova</u>^a, V.I. Voronkova^a, A.B. Gagor^b, A.P. Pietraszko^b, O.A. Alekseeva^c,

^aM.V. Lomonosov Moscow State University, ^bW. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences,

^cShubnikov Institute of Crystallography, Russian Academy of Sciences.

E-mail: voronk@polly.phys.msu.ru

 $Bi_{2}WO_{6}$ and $Bi_{2}MOO_{6}$ are archetypal (n= 1) members of the large family of layered perovskiterelated compounds with the general formula $(Bi_2O_2)(A_{n-1}B_nO_{3n+1})$ (Aurivillius phases). These compounds attract attention as ferroelectrics, piezoelectrics, oxide-ion conductors, catalytic materials. Three phase transitions were found in pure Bi₂WO₆ and Bi₂MoO₆: ferroelectric between two polar orthorhombic phases $\gamma \rightarrow \gamma'''$ (310°C for Bi₂MoO₆, 640-660°C for Bi₂WO₆, ferroelectric between polar and nonpolar orthorhombic phases $\gamma''' \rightarrow \gamma''$ (604°C for Bi₂MoO₆, 930°C for Bi₂WO₆), reconstructive between orthorhombic and high temperature monoclinic phases $\gamma'' \rightarrow \gamma'$ (680oC for Bi, MoO₆, 960oC for Bi, WO₆). The monoclinic γ '-phases do not belong to Aurivillius structure, and the last transition is irreversible in the case of Bi²MoO⁶ and reversible with destruction of crystalline samples in the case of Bi₂WO₆ that is unfavorable for technical applications. An influence of dopants on this transition has not been investigated.

The aim of present work is synthesis of $\text{Bi}_2 W_{1-x} \text{Me}_x O_{6-y}$ and $\text{Bi}_2 \text{Mo}_{1-x} \text{Me}_x O_{6-y}$ (Me = Nb, Ta, Sb) solid solutions and investigation of their polymorphism and properties. Polycrystalline samples of $\text{Bi}_2 W_{1-x} \text{Nb}_x O_{6-y}$ (x = 0.02, 0.05, 0.1), $\text{Bi}_2 W_{1-x} \text{Ta}_x O_{6-y}$ (x = 0.02, 0.05, 0.1, 0.15), $\text{Bi}_2 W_{1-x} \text{Ta}_x O_{6-y}$ (x = 0.02, 0.03, 0.04, 0.05) and $\text{Bi}_2 \text{Mo}_{1-x} \text{Nb}_x O_{6-y}$ (x = 0.02, 0.05, 0.5), $\text{Bi}_2 \text{Mo}_{1-x} \text{Me}_x O_{6-y}$ (Me = Ta, Sb; x = 0.02, 0.05) were obtained by

solid state synthesis in air. According to X-ray analysis, at room temperature, all samples belong to Aurivillius family and are isostructural with γ -Bi₂WO₆ and γ -Bi₂MoO₆ phases.

Increase of Me = Nb, Ta concentration in Bi₂W₁. _xMe_xO_{6-y} leads to shift of reconstructive $\gamma'' \rightarrow \gamma'$ transition into high temperature region. It is fully suppressed in Bi₂W_{1-x}Nb_xO_{6-y} solid solutions (x = 0.1). In the case of Ta (x = 0.1) and Sb (x = 0.04) a mixture of γ'' and γ' phases have been observed at long exposure at 940-1000oC. Ferroelectric $\gamma''' \rightarrow \gamma''$ transition does not suppressed by the dopants. For Me = Nb, Ta it strongly shifts to lower temperatures, thus the temperature region of existence of the nonpolar orthorhombic γ'' phase significantly increases from 30 to 200 degrees.

Doping Mo with Nb results in significant shift of ferroelectric $\gamma''' \rightarrow \gamma''$ and reconstructive $\gamma'' \rightarrow \gamma'$ transitions into high temperature region. According to Xray data, Bi₂MoNbO_{6-y} sample (50%Nb) keeps the Aurivillius-type structure, even after prolonged exposure above 800°C. Below the melting point (1050°C) DSC shows only one slight anomaly at 950°C, which presumably corresponds to ferroelectric $\gamma''' \rightarrow \gamma''$ transition.

Substitution of W⁶⁺ and Mo⁶⁺ with Nb⁵⁺, Ta⁵⁺ and Sb⁵⁺ leads to formation of oxygen vacancies. As a result the conductivity of samples with low dopant concentration (5-10 at.%) increases by 1-2 orders of magnitude in comparison with pure Bi²WO⁶ or Bi²MoO⁶. The higher concentration of Nb and Ta dopants leads to decrease in electrical conductivity.

This work is supported by RFBR (grant No. 11 02-00254-a).

Keywords: Aurivillius phases; oxygen conductors; phase transition