Poster Presentations

[MS24-P12] A systematic crystal chemical study of calcium rich mixed tetrelides. <u>Michael Jehle</u>^a, Julia Steckhan^a, Caroline Röhr^a

^a Institut für Anorganische und Analytische Chemie, Universität Freiburg, D-79104 Freiburg, Germany.

E-mail: michi@almandine.chemie.uni-freiburg. de

In this work, the systematic investigation of ternary Calcium-rich tetrelides Ca_vM_v (M=Ge, Sn, Pb) is presented. Therefore, the corresponding isotypic binary phases of the compositions x:y=2:1, 5:3 and 1:1 have been taken as starting points. 2:1: The phases Ca₂Sn_zGe_{1-z} crystallize in the well known Co₂Si structure type (Pnma) [1]. The noble gas isosteric Sn and Ge ions, accordingly, are substituted against each other in a statistical manner without forming any kind of superstructure and the lattice parameters and unit cell volumes satisfy Vegard's law. 5:3: Nearly all calcium tetrelides A_5M_3 [2] crystallize in the Cr₅B₃ structure type (I4/mcm) hence also obeying the Zintl concept $(5 \cdot Ca^{2++1b}[M_2]^{6-+}[M]^{4-})$. The only exception is Ca₅Pb₂ crystallizing in an own structure type (P63mc). Therefore, it is not remarkable, that the phases containing Ge or Sn also show a continuous phase width Ca₅[SnzGe₃₋₇] (e. g. z=2.02, I4/mcm, a=795.1(1), c=1506.4(1)pm, R1=0.024), whereas in Ca₅Pb₃ not any lead atom could be substituted by germanium. According to the preferred occupation of the M2 dumbbells by germanium, the coloring of the anions is terminated by size effects only. 1:1: The monotetrelides [2,3] of germanium and tin and the whole series CaSnzGe1-z both form the CrB structure type (e. g. z=0.37, Cmcm, a=465.6(1), b=1108.0(3), c=411.5(1) pm, R1= 0.032) exhibiting zigzag chains (2bM2–). CaPb crystallizes in the AuCu structure type. Hence, it is not surprising, that Ge in CaGe could only be substituted by small amounts of Pb (8%). 3:2-5:3: In the small x:y composition range between 5:3 and 3:2 the compounds Ca₂₆Sn₁₇₋

 $_{z}$ Gez (e.g. z=1.7, P4bm, a = 1242.3(1), c = 1664.3(1) pm, R1 = 0.029), $Ca_{31}Sn_{20}$ [5,6] and Ca₃₆Sn₂₃ [2] can be located. They show linear Mn chain pieces of differing lengths n, wherefore they no longer follow Zintl's electron counting rule. Beyond that, their structures exhibit M2 dumbbells and isolated M anions. All three structures can be described via the general formula $A_{5m}^{+}+_{6}M_{3m}^{+}+5$ [4] and can be built up from varying numbers of blocks A₃M₂ and A₅M₃ which structurally correspond to the Y₃Rh₂ and the W₅Si₃ type (leading to chain lengths ofMn with n=4 ($Ca_{26}Sn_{17}$ -zGez), n=5 ($Ca_{31}Sn_{20}$) and n=6 (Ca₃₆Sn₂₃), respectively) Interestingly, these two structure types are not observed as binary compounds in the systems Ca-Ge-Sn and Ca-Ge-Pb.

 Eckerlin, P., Leicht, E. & Wölfel, E. (1961).
Z. Anorg. Allg. Chem. 307, 145-156.
Palenzona, A., Manfrinetti, P. & Fornasini, M.L. (2000). J. Alloys Comp. 312, 165-171.
Harms, W., Wendorff, M. & Röhr, C. (2009).
J. Alloys Comp. 469, 89-101.
Parth'e, E. & Chabot, B. (1984). Handbook on the Physics and Chemistry of Rare Earths Vol. 6, Elsevier, Amsterdam.
Fornasini, M. L. & Franceschi, E. (1977). Acta Crystallogr. B 33, 3476-3479.
Ganguli, A. K., Guloy, A. M., Leon-Escamilla, E. A. & Corbett, J. D. (1993). Inorg. Chem. 32, 4349-4353.

Keywords: alkaline earth, germanides, stannides, structure and bonding