Poster Presentations

[MS24-P35] Towards Controlling the Valance Tautomer Interconversion Character by Solvation.

<u>Carlos Pinheiro</u>¹, Marcos Ribeiro¹, Daniel Stasiw², David Shultz², Philip Pattison³, Paul Raithby⁴.

¹Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; ²Department of Chemistry, North Carolina State University, United States, ³Swiss-Norwegian Beam Line, ESRF, France; ⁴Chemistry Department, University of Bath, United Kingdom. E-mail:cbpinheiro@ufmg.br

Valence tautomers[1] are bi-stable functional molecular materials in which it is observed charge transference between redox active ligands and a metallic center followed by the change of spin of the metal[2], induced by external stimuli such as illumination[3] and/or changes in temperature and pressure[4].

Valence tautomerism (VT) interconversion is essentially entropically driven, associated with remarkable variations in optical and/or magnetic properties, and can be modulated with slight chemical changes. Typical examples of VT compounds are coordination compunds of Co and *o*-dioxolenes ligands[5].

[Co^{III}(SQ)(Cat) Crystals of complex $(4-NO_2-py)_2$ (I), where py= pyridine, Cat 3,5-di-*t*butylcatecholate and SQ=3,5-ditbutylsemiquinonate, were first studied with respect to low spin (LS) to high spin (HS) thermo and photoinduced conversion. It was reported that I become HS-Co^{III} at temperatures below 110 K with non cooperative LS–Co^{III} $n \leftrightarrow HS$ – Co^{II} tautometic interconversion [6]. Crystals of $Co^{III}(SQ)(Cat)(4-NO_2-py)_2]/Toluene$ (II) and Co^{III}(SQ)(Cat)(4-NO₂-py)₂]/Benzene (III) have been prepared to investigate further the solvation effects on the interconversion properties. It has been found that solvated crystals undergo to LS-

Co^{III} n↔ HS–Co^{II} interconversion at temperatures below 140 K for **II** and below 110 K for **III**. The tautometic interconversion in **I** and in **II** has a non cooperative character whereas for III it is highly cooperative. The remarkable common structural features in the three dimensional packing of compounds **I**, **II** and **III** are the Car–H...Oi_{diox} and Car–H...ONOi hydrogen bonds between inlayer i symmetry related [Co^{III}(SQ)(Cat) (4-NO₂-py)₂] molecules with distances values summarized below.

Distances at *ca*. 100 K (Å)

	I[6]	II	III
C–HO _{diox}	3.24	3.33(2)	3.131(7)
C–HONO	3.32	3.34(2)	3.287(7)
¹ CoIII–CoIII	7.283	7.333(1)	6.9491(8)
² CoIII–CoIII	11.788	11.757(1)	12.331(2)
³ CoIII–CoIII	11.718	14.944(2)	15.357(3)

1, 2 and 3 indicate distances between cobalt atoms in molecules linked by C–H...O_{diox}, C–H... ONO and out of layers respectively.

When compared with **I**, the inclusion of the toluene in the lattice of **II** does not affect the symmetry of the crystal structure (**I** and **II** are described by P2₁/c space group, Z=4), but increases the separation between the layers of $[Co^{III}(SQ)(Cat)(4-NO_2-py)_2]$ interacting molecules in *ca*. 30%, weakening the *t*-butyl interactions, as also observed in $[Co^{III}(SQ)(Cat)(4-NO_2-py)_2]$ (4-CN-py)₂] compound[7].

Benzene solvated crystals **III** are described by P1 space group, Z=2, and at 100 K. When compared with **I** and **II**, benzene solvated crystals present the shortest C_{ar} -H... O_{diox}^{i} and similar C_{ar} -H... ONO^{*i*} hydrogen bonds lengths.

They also present the shortest Co^{III} -Co^{III} distances between inlayer molecules linked by Car-H... O^{i}_{diox} and the longest Co^{III} -Co^{III} distances between Thus, as already pointed out before[6], VT in $[Co^{III}(SQ)(Cat)(4-NO_2-py)_2]$ seems to be due to the intermolecular interactions between inlayer molecules, however the interconversion cooperativity seems to be related with the strength of the Car-H...O^{*i*}_{diox} interaction and with the correspondent Co-Coi separation.

Thus solvation play a key role in the definition of the VT interconversion nature.

Acknowledgments: CAPES/Brazil grant 10030-12-3.

[1] C. G. Pierpontand R. M. Buchanan (1981). *Coord. Chem. Rev.*, **38**, 45-87.

[2] D. A. Shultz, Magnetism, *Wiley-Vch Verlag Gmbh & Amp; Co. Kgaa*, 2003.

[3] O. Sato, A. Cui, R. Matsuda, J. Tao and S. Hayami (2007). *Acc. Chem. Res.*, **40**, 361–369

[4] (a) D. N. Hendrickson and C. G. Pierpont (2004). *Top. Curr. Chem.*, **234**, 63 (b) A. Dei, D. Gatteschi, C. Sangregorio and L. Sorace (2004). *Acc. Chem. Res.*, **37**, 827-835.

[5] C. G. Pierpont (2001). Coord. Chem. Rev, 216–217, 99–125

[6] R. D. Schmidt, D. A. Shultz, J. D. Martin and P. D. Boyle (2010). *J. Am. Chem. Soc.*, **132**, 6261-6273.

[7] R. D. Schmidt, D. A. Shultz and J. D. Martin (2010). *Inorg. Chem.*, **49**, 3162–3168.