Poster Presentations

[MS35-P01] REXS on Eu_{1-x}Y_xMnO₃ in High Magnetic Fields

J. Strempfer, A. Skaugen, D.K. Shukla and H.C. Walker,

Deutsches Elektronen-Synchrotron, Hamburg, Germany Email: joerg.strempfer@desy.de

The rare earth manganites RMnO3 (R=Gd, Tb, Dy) with perovskite structure have emerged as a reference class of magnetoelectric materials among the different compounds exhibiting multiferroic behavior. Eu_{1-x}Y_xMnO₃ crystallizes in Pbnm space group like TbMnO3, but without magnetism at the rare earth sites, since both Eu (4f) and $Y^{(4f)}$ ions are non-magnetic [1]. Variation of Y doping allows changing the ionic radii and consequently the Mn-O-Mn angle. As such, it can serve as a tool to probe the role of rare earth magnetism in the RMnO₃ class of multiferroics. Magnetic order as a function of temperature and magnetic field is investigated by resonant elastic x-ray scattering (REXS) in a 14 T split coil magnet at beamline P09, PETRA III [2]. Especially we investigate the field dependence of the different magnetic modes as a function of temperature and field in the compounds Eu $_{\rm Y}$ MnO₃ with x=0.2 and 0.3. Both compounds order antiferromagnetically below TN ~ 45 K and below TC \sim 30K, spontaneous polarization occurs. Variation of incident x-ray polarization and subsequent analysis of the magnetic signal allows conclusion about the cycloid order. Application of magnetic field shows stabilization of the weakly ferromagnetic phase in Eu_{0.8}Y_{0.2}MnO₃ just below TC and identical ordering behavior of the two compounds in the low temperature region.

J. Hemberger *et al.*, Phys. Rev. B, 035118 (2007).
J. Strempfer *et al.*, J. Synchr. Rad. 30 (2013).

Keywords: magnetic order, high magnetic fields, multiferroics