Microsymposium

MS17.005

The impact of pressure on β-Cyclodextrin•acetaminophen inclusion complexes

<u>S. Saouane</u>¹, W. Morgenroth^{2,3}, H. Liermann³, C. Paulmann^{4,5}, F. Fabbiani¹

¹Georg-August-Universität Göttingen, GZG Abt. Kristallographie, Göttingen, Germany, ²Goethe-Universität Frankfurt, Institut für Geowissenschaften Abt. Kristallographie, Frankfurt am Main, Germany, ³Deutsches Elektronen-Synchrotron DESY, Photon Science (ECB), Hamburg, Germany, ⁴Deutsches Elektronen-Synchrotron DESY, HASYLAB, Hamburg, Germany, ⁵Universität Hamburg, Mineralogisch-Petrographisches Institut, Hamburg, Germany

Cyclodextrins (CDs) have attracted considerable interest as model systems in supramolecular host-guest chemistry. They are described as hollow truncated cones with a hydrophilic outer surface and a nonpolar inner cavity suitable for small molecules' encapsulation.[1] By virtue of their character, CDs are used as excipients to improve the aqueous solubility of active pharmaceutical ingredients (APIs). High-pressure crystallisation techniques have been established as a suitable tool for exploring the phenomenon of polymorphism and solvate formation of pharmaceutical compounds throughout numerous examples reported in the literature.[2] Thus, exploring the inclusion-complex formation and the polymorphic behaviour of CDs with APIs at high pressure would be an interesting extension of the technique. The present work describes the attempt of an in-situ crystallisation of β -CD•acetaminophen inclusion complex and compression studies of the known β -CD•acetaminophen complex[3] in different crystallisation media at pressures up to 1.0 GPa. A new high-pressure crystal form observed at 0.8 GPa as well as unexpected results are presented herein. The crystals have been characterised by means of polarised optical microscopy, Raman spectroscopy and single-crystal X-ray diffraction using both home and synchrotron sources.

[1] W. Saenger, J. Jacob, K. Gessler, et al, Chem Rev, 1998, 98, 1787–1802, [2] F. P. A. Fabbiani, C. R. Pulham, Chem Soc Rev, 2006, 35, 932–942, [3] M. R. Caira, D. R. Dodds, J Incl Phenom Macrocycl Chem, 2000, 38, 75–84

Keywords: cyclodextrin, high-pressure, polymorphism