Poster Presentation

MS21.P05

Crystal Structure of Human $\alpha-2,6$ Sialyltransferase

B. Kuhn ${ }^{1}$, J. Benz ${ }^{1}$, M. Greif ${ }^{2}$, A. Engel ${ }^{2}$, H. Sobek ${ }^{2}$, M. Rudolph ${ }^{1}$
${ }^{1}$ F. Hoffmann-La Roche, pRED, Basel, Switzerland, ${ }^{2}$ Roche Diagnostics, Penzberg, Germany

Human β-galactoside α-2,6 sialyltransferase I (ST6Gal-I) establishes the final glycosylation pattern of many glycoproteins by transferring a sialyl moiety to a terminal galactose. Complete sialylation of therapeutic immunoglobulins is essential for their antiinflammatory activity and for protein stability. However, a complete glycan tree is difficult to achieve in vitro due to limited activity of ST6Gal-I for some galactose acceptors. No structural information on ST6Gal-I that could help to improve the enzymatic properties of ST6Gal-I for biotechnological purposes was previously available. We describe the crystal structure of human ST6Gal-I, which allows rationalizing the inhibitory activity of cytosine-based nucleotides. ST6Gal-I differs from related sialyltransferases by several large insertions and deletions that determine its regio- and substrate specificity. Excitingly, a large glycan binds to the active site in a catalytically competent orientation, representing the general binding mode of any substrate glycoprotein. This binding mode also rationalizes why some galactose acceptors are incompletely sialylated. Comparison with a bacterial sialyltransferase lends first insight into the Michaelis complex. The results support an SN2 mechanism with inversion of configuration at the sialyl residue and suggest substrate-assisted catalysis with a charge relay mechanism that bears conceptual similarity to serine proteases.
[1] B. Kuhn, J. Benz, M. Greif, A.M. Engel, H. Sobek, M.G. Rudolph, Acta Cryst. D, 2013, 69, 1826-1838

Keywords: Glycosylation, Immunotherapy, Enzyme mechanism

