Poster Presentation

MS21.P08

Crystallographic evidence for oxidative Met→Asp conversion in human hemoglobin

<u>J. Soman</u>¹, M. Strader², W. Hicks², T. Kassa², E. Singleton¹, J. Olson¹, M. Weiss³, T. Mollan², M. Wilson⁴, A. Alayash² ¹Rice University, Department of Biochemistry and Cell Biology, Houston, USA, ²Food and Drug Administration, Laboratory of Biochemistry and Vascular Biology, Bethesda, USA, ³Childrens Hospital of Philadelphia, Philadelphia, USA, ⁴University of Essex, Department of Biological Sciences, UK

The mutants HbA Bristol-Alesha (βV(E11)67M) and HbF Toms River (γV(E11)67M) [1,2] are examples of a 'silent' posttranslational modification in which the side chain of the substituted amino acid is chemically modified (Met \rightarrow Asp) resulting in a disparity between the DNA and protein sequences. In both cases the patients' hemolysate contained both V67M and V67D isoforms. But in the analogous α subunit mutant, Hb Evans α V(E11)62M, the conversion to Asp was not identified and DNA sequencing confirmed the Met replacement [3]. Our crystal structures of the three (ferrous) CO-bound recombinant V(E11)M mutants show the MetE11 side chain in similar conformations. But the air-oxidized β mutant crystals clearly showed a 'bifurcated' and smaller electron density pattern for the E11 side chain, indicating the appearance of Asp. Also, the ligand electron-density at the iron atom in the oxidized β subunit appears to be an oxoferryl Fe4+=O rather than a Fe3+OH2 ferric complex. In contrast, there was little change in the electron density for α MetE11 in oxidized α V62M crystals. The ligand in the ferric α subunit is clearly a coordinated water molecule. But again, a ferryl Fe4+=O complex appears to occur in the wild-type β subunit. This strongly suggest that β subunits have a greater propensity to form highly reactive ferryl species, and that the ferryl species play a role in the Met \rightarrow Asp conversion. Our autoxidation and proteomics studies showed that although all three recombinant VE11M mutants had similar, high rates of autooxidation and a strong H2O2 dose dependence on sulfoxide and sulfone formation, no Asp formation was detected in α subunits whereas MetE11 is converted to Asp to levels as high as 15% in vitro in β and γ subunits. We propose that the Met \rightarrow Asp conversion specifically involves H2O2 mediated oxidation of the ferrous heme to an oxoferryl state, and because the transient ferryl intermediates are much less stable in the α subunits, there is no oxidative conversion.

[1] D.C. Rees, J. Rochette, C. Schofield et al., Blood, 1996, 88, 341-348, [2] M.A. Crowley, T.L. Mollan, O.Y. Abdulmalik et al., N Engl J Med, 2011, 364, 1837-1843, [3] M.I. Zanotto, K. Calvo, G. Schvartzman et al., Archivos argentinos de pediatria, 2010, 108(6), 130-133

Keywords: Autooxidation, posttranslational, peroxide