
Poster Presentation

MS30.P03

A closed-homodimer structure of human importin-a1

<u>H. Miyatake</u>¹, A. Sanjoh², G. Matsuda³, Y. Tatsumi², Y. Miyamoto⁴, N. Dohmae¹, Y. Aida³ ¹RIKEN Global Researc Cluster, Saitama, Japan, ²Protein Wave Corporation, Nara, Japan, ³RIKEN Viral Infectious Desearses Unit, Saitama, Japan, ⁴Monash University, Department of Biochemistry and Molecular Biology, Clayton, Australia

We determined the crystal structure of N-terminal importin- β -binding (IBB) domain truncated human importin- α 1 (Δ IBB-importin- α 1) at 2.63Å resolution. The crystal structure of Δ IBB-importin- α 1 is a novel closed-homodimer. The homodimer exists in an autoinhibition state in which both of the major and minor NLS-binding sites are completely buried in the homodimerization interface to avoid NLS binding. Importin- α 1 is in dimer-monomer equilibration in solution. In the dimerization sate, the P1'-binding pocket in the minor NLS binding site plays a role to stabilize the dimer formation. The external K108 binds into the P1'-binding pocket that results in the autoinhibition of the NLS binding. The present closed-homodimer of Δ IBB-importin- α 1 conjured the functional aspects of multimerization of importin- α 1. The further physicochemical studies using full- and Δ IBB- importin- α 1 reveal that the IBB domain is involved in the monomer-dimer equilibration; thereby the NLS binding affinity is kept even in the higher concentration of importin- α 1. Owing to the multimerization property, importin- α s can autoinhibition the NLS binding, that may result in a variety of NLS recognition way.

Keywords: importin-a1, closed-homodimer, autoinhibition