Microsymposium

MS74.003

Crystal structure interconnections in a family of hydrated phosphate-sulfates

O. Yakubovich^{1,3}, <u>I. Steele</u>², O. Karimova³

¹Moscow State University, Departament of Crystallography, Moscow, Russia, ²University of Chicago, Department of Geophysics, Chicago, USA, ³Russian Academy of Science, Institute of Geology of Deposits, Petrography, Mineralogy and Geochemistry, Moscow, Russia

The phosphate-sulfate family incorporates several water-containing hypergene minerals with various structures. We determined the crystal structure of lately discovered [1] fibrous mineral arangasite, $[Al_2F(H_2O)_6(PO_4)(SO_4)] \cdot 3(H_2O)$ using single-crystal synchrotron diffraction at 100 K (a =7.073(1), b=9.634(2), c=10.827(2) Å, β =79.60(1)°, P2/a, Z=2). Its crystal chemical interpretation has allowed us to reveal some interesting features in a title group of compounds. The arangasite crystal structure is dominated by chains extending in the [100] direction and built of pairs of corner-shared Al octahedra joined through bridging F atoms and P tetrahedra. They alternate in the [001] with S tetrahedra forming layers parallel to the ac plane through a system of hydrogen bonds. Along [010] the complex layers are separated by layers of H₂O molecules. Hydrogen bonding serves here as the only mechanism providing linkage between the main structural fragments. The AI/ P chains are topologically identical to the chains built from Fe octahedra and P tetrahedra in the triclinic structure of destinezite, Fe₂(OH)(PO₄)(SO₄)(H₂O)₆ [2]. The repeating subunit of both chains consists of two octahedra and one tetrahedron sharing vertices. A main difference among the chains arises from their chemistry; Al octahedra in arangasite form pairs by sharing the F vertex of neighboring polyhedra, whereas pairs of Fe octahedra in destinezite are linked together through the oxygen vertex of an OH group. As a result, the larger size of the Fe octahedra compared to Al octahedra causes a larger c = 7.31 Å along the chain in destinezite. Additional SO₄ tetrahedra here are attached to these chains along their periphery through an oxygen vertex bridge with Fe octahedra. The monoclinic sanjuanite, $Al_2(PO_4)(SO_4)(OH)(H_2O)_9$ structure [3] is composed of Al/P chains, parallel to a = 6.11 Å. These chains are also built from three-member units that include corner-sharing pairs of octahedra connected by PO₄ tetrahedron, but they are not topologically equivalent to the chains in the arangasite and destinezite structures. Similar to arangasite, sulfate groups and H₂O molecules reside between chains in the sanjuanite structure with hydrogen bonding. Thus, similar the crystal chemical formulae of sanjuanite and arangasite differ with respect to the (OH) \rightarrow F substitution, which results in contrasting unit cell parameters. Note, that the unit cell volume of sanjuanite, is twice as large as arangasite.

[1] G.N. Gamyanin, N.V. Zayakina, L.T. Galenchikova. Zapiski RMO, 2013, № 5, 21-30 (in Russian), [2] D.R. Peacor, R.C. Rouse, T.D. Coskren, et all. Clays and Clay Minerals, 1999, 47, 1–11, [3] F. Colombo, J. Rius, E.V. Pannunzio-Miner, et all. Canadian Mineralogist, 2011, 49, 835–847

Keywords: phosphate-sulfates, arangasite crystal structure, synchrotron radiation