Poster Presentation

MS83.P24

The crystallochemical role of malonate ions in coordination polymers

<u>Y. Medvedkov</u>¹, L. Serezhkina¹, D. Pushkin¹, V. Serezhkin¹ ¹Samara State University, Department of Inorganic Chemistry, Samara, Russian Federation

All compounds that contain malonate dianions $C_3H_2O_4^{2-}$ (mal²⁻) and atoms of d- or f-metals were analyzed. Dianions mal²⁻ in structures of examined compounds reveal 17 topological types of coordination against metal atoms. Available data shows that mal²⁻ more often form six-membered metal cycles which is the most abundant case for all 570 crystallographic sorts of analyzed mal²⁻ (80%). For those mal²⁻ which form six-membered metal cycles the average observed valence angle CCC is equal to 120°. Results of regression analysis of all mal²⁻ showed linear dependence of \angle CCC on dihedral angel (ϕ) between planes which go through oxygen and carbon atoms of different carboxyl groups of one anion. For the equation \angle CCC = 124.9 – 0.207 ϕ , correlation coefficient is -0.90. Discovered that in structures of crystals when $\phi < 60^{\circ}$ mal²⁻ necessarily form six-membered metal cycles. Structural slackness of mal²⁻ influence on characteristics of six-membered metal cycles formed by them. Those metal cycles usually have bath conformation. Coordination polymers with fixed type of metal atom and identical type of coordination of mal^{2-} can have different dimension even in the absence of other linkers. This effect is evident on the example of $[UO_2(mal)(L)] \cdot nH_2O$ compounds. Reportedly [1], change of composition and structure of ligand L lead to changes in the system of intramolecular hydrogen bonds which influence on conformation of six-membered metal cycles. The change of conformation of this cycles lead to different relative spatial distribution of the three uranium atoms, connected with one mal²⁻. Although of the same stoichiometric composition and crystallochemical role of uranium atoms and coordinated ligand resulting polymeric groups [UO₂(mal)(L)] in crystals have different dimension: 3D, 2D or 1D respectively for L – carbamide, water or dimethylacetamide. This work was supported by the base part of the government mandate of the Ministry of Education and Science of the Russian Federation.

[1] V.N. Serezhkin, M.S. Grigor'ev, A.V. Vologzhanina et al., Russ. Chem. Bull, 2013, 1835-1842.

Keywords: malonates, coordination polymers