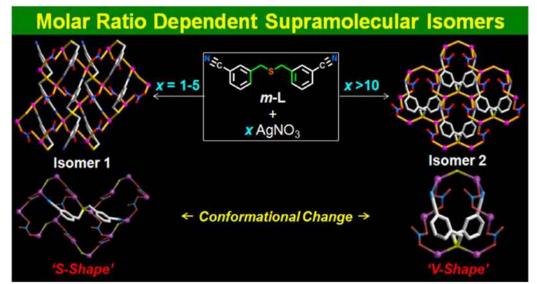
Poster Presentation

CC.P20


Mole-Ratio-Dependent Supramolecular Isomerism in Ag(I) Coordination Networks

E. Lee¹, S. Lee¹, K. Park¹

¹Gyeongsang National University, Department of Chemistry, Jinju, South Korea

Three regioisomers (o- L, m- L, and p- L) of bis(cyanobenzyl)sulfide were employed to examine the effect of ligand isomers on the networking assembly. In the reaction of m- L with silver(I) nitrate, supramolecular isomers 1 and 2 of stoichiometry $[Ag_2(m- L)(NO_3)_2]_n$, each comprising a 2D polymeric network were obtained on varying the mole-ratio of the reactant (see the below scheme). Notably, the overall structural motifs of 1 and 2 are mainly due to the conformational differences of the tridentate m-L: 'S-shaped' in isomer 1 and 'V-shaped' in isomer 2. Under identical reaction conditions, the ligand isomers o-L and p- L yield a loop-chain type 1D coordination polymer $[Ag(o-L)NO_3]_n$ (3) and a multichannel 3D framework structure $[Ag_2(p-L)(NO_3)_2]_n$ (4), respectively. The formation of these products shows no mole-ratio dependency.¹ Among the ligand isomer, p-L showed the anion-dependent complexes 5 -7 with different topologies in the reactions of silver(I) salts (X = CIO_4^- , PF_6^- , or $CF_3CO_2^-$). AgClO₄ afforded a double-stranded 1D polymer of type $[Ag(p-L)(CIO_4)]_n$ (5). Meanwhile, treatment of AgPF₆ and AgCF₃CO₂ afforded a 2-fold interpenetrated 3D coordination polymer $\{[Ag_3(pL)_4](PF_6)_3 \cdot 4CH_2Cl_2\}_n$ (6) and a multichannel 3D network $[Ag_2(pL)(CF_3CO_3)_2]_n$ (7), respectively.

[1] E. Lee, J.-Y. Kim, S. S. Lee, et al., Chem. Eur. J. 2013, 19, 13638-13645

Keywords: Mole-Ratio, Supramolecular Isomerism, Coordination Polymer