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Neither International Tables for Crystallography (ITC) nor available crystal-

lography textbooks state explicitly which of the 14 Bravais types of lattices are

special cases of others, although ITC contains the information necessary to

derive the result in two ways, considering either the symmetry or metric

properties of the lattices. The first approach is presented here for the first time,

the second has been given by Michael Klemm in 1982. Metric relations between

conventional bases of special and general lattice types are tabulated and applied

to continuous equi-translation phase transitions.

1. Introduction

The mathematician Michael Klemm (1982) published a text

‘Symmetrien von Ornamenten und Kristallen’ intended for

students and lecturers of mathematics. Considering conven-

tional cells for the 14 types of Bravais lattices, he determined

what lattice types are special cases of others and illustrated the

result in a figure. This result is of basic importance but it is

mentioned neither in Volume A of International Tables for

Crystallography (Hahn, 2002), which we shall refer to as ITC-

A, nor in any of the standard crystallography textbooks. To

improve general understanding, Grimmer & Nespolo (2006)

gave a figure where the result was shown using standard

crystallographic notations for the lattice types. Klemm (1982)

and Grimmer & Nespolo (2006) arranged the lattice types on

five levels, which correspond to different numbers of inde-

pendent lattice parameters, as shown in Fig. 1.

Looking at graphical representations of the various lattice

types as given e.g. in Fig. 9.1.7.1 of ITC-A one finds that

certain relations are obvious, e.g. the relations between the

primitive lattices aP ! mP ! oP ! tP ! cP, where the

arrow points from general to special case. However, there are

also pitfalls: (i) hP is not a special case of oP, although the

holohedry of hP contains the one of oP. (ii) The centred

monoclinic lattice type mS is called mC in Fig. 9.1.7.1.

However, C centring a lattice of type mP gives a new type only

if the unique monoclinic axis is not c, otherwise it remains of

type mP.

Unfortunately, misunderstandings of the relations between

lattice types seem to be frequent. Grimmer & Nespolo’s

(2006) figure has not had the required effect. This led the

author to investigate other ways of deriving the result.

Considering Niggli-reduced primitive cells instead of the

conventional centred ones did not appear advantageous.

Finally, the author found that ITC-A contains results that

allow one to derive the relations in two different ways, one

based on the metric properties of lattices, the other on their

symmetries.
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In x2 it will be shown how Fig. 1 can be obtained from

metric results given in ITC-A. x3 presents for the first time the

approach based on the space-group symmetry of the lattice

types. In retrospect, it may be surprising that this approach has

not been published earlier, considering that it is based on

results available already in Internationale Tabellen zur

Bestimmung von Kristallstrukturen (Hermann, 1935). These

tables list the translationengleiche (i.e. equi-translation)

subgroups of the space groups in three dimensions, based on

the work of Hermann (1929). In x4 metric relations between

conventional bases of special and minimally more general

lattice types are tabulated. They are applied to continuous

equi-translation phase transitions in x5.

2. Metric-based derivation of the partial order among
the 14 lattice types

Similar to Klemm (1982), Gruber (2002) gives in Table 9.3.4.1

of ITC-A necessary and sufficient conditions for conventional

cells of lattices belonging to one of the 14 lattice types. Except

for hP and the three cubic types, the conditions contain at least

one ‘<’ or ‘ 6¼’. Replacing one of them in turn by ‘=’, the

Bravais types that are minimal special cases of the given type

can be determined. In the more complicated cases, Gruber

(2002) does this already in footnotes to his table. Let us do it in

all cases.

There are no special cases of cP, cI, cF (a = b = c, �= � = � =

90�) and of hP (a = b, � = � = 90�, � = 120�).

For the primitive conventional tetragonal cell the conditions

for tP are according to Table 9.3.4.1: a = b 6¼ c, � = � = � = 90�.

If b = c the type is cP.

For the body-centred conventional tetragonal cell the

conditions for tI are: c=
ffiffiffi

2
p
6¼ a = b 6¼ c, �= � = � = 90�. If c=

ffiffiffi

2
p

= a the type is cF, if b = c the type is cI.

For the primitive conventional orthorhombic cell the

conditions for oP are: a < b < c, �= � = � = 90�. If a = b or b = c

the type is tP.

For the body-centred conventional orthorhombic cell the

conditions for oI are: a < b < c, � = � = � = 90�. If a = b or b = c

the type is tI.

For the all-face-centred conventional orthorhombic cell the

conditions for oF are: a < b < c, �= � = � = 90�. If a = b or b = c

the type is tI.

For the C-face-centred conventional orthorhombic cell the

conditions for oC are: a < b 6¼ a
ffiffiffi

3
p

, �= � = � = 90�. If a = b the

type is tP, if b = a
ffiffiffi

3
p

the type is hP.

For the primitive conventional rhombohedral cell the

conditions for hR are: a = b = c, �= � = �, � 6¼ 60�, � 6¼ 90�, � 6¼
arccos(�1/3) = 109�2801600. If � = 60� the type is cF, if � = 90�

the type is cP, if � = arccos(�1/3) the type is cI.

For the primitive conventional monoclinic cell (unique axis

b) the conditions for mP are:�2c cos� < a < c, �= � = 90� < �.

If � = 90� the type is oP, if �2c cos� = a or a = c the type is oS.

For the body-centred conventional monoclinic cell (unique

axis b) the conditions for mI are:�c cos� < a < c, �= � = 90� <

� and additional conditions given by Gruber that exclude hR.

If � = 90� the type is oI, if�c cos� = a the type is oC, if a = c the

type is oF.

These considerations show that all types with less than four

independent lattice parameters are special cases of at least one

of the two monoclinic types. Fig. 1 follows because, obviously,

the two monoclinic types are special cases of the anorthic (=

triclinic) one.

3. Symmetry-based derivation of a partial order among
the 14 lattice types

Each lattice type can be characterized by the space-group type

to which its lattices belong. These types are symmorphic and

possess the point group of the holohedry. Table 1 gives the
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Figure 1
The lattice type of the three-dimensional lattice at the upper end of a line
is a special case of the type at its lower end.

Table 1
The 14 lattice types and the corresponding space-group types (SGTs).

Lattice type
International
SGT symbol

Schoenflies
SGT symbol

Number
of SGT

Order
of the
holohedry

aP P1 C1
i 2 2

mP P2/m C1
2h 10 4

mS
(mA, mB, mC, mI)

C2/m C3
2h 12 4

oP Pmmm D1
2h 47 8

oS
(oA, oB, oC)

Cmmm D19
2h 65 8

oF Fmmm D23
2h 69 8

oI Immm D25
2h 71 8

tP P4/mmm D1
4h 123 16

tI I4/mmm D17
4h 139 16

hR R3m D5
3d 166 12

hP P6/mmm D1
6h 191 24

cP Pm3m O1
h 221 48

cF Fm3m O5
h 225 48

cI Im3m O9
h 229 48



corresponding information, which can also be found in

Vainshtein (1981) and in Borchardt-Ott (1997).

The notations mS and oS, where S stands for ‘side-face-

centred’ (i.e. seitenflächenzentriert), have been proposed as

standard ones by de Wolff et al. (1985). Note that Gruber

(2002) uses a body-centred (innenzentriert) cell mI.

To answer the question ‘Which lattice types are special cases

of others?’ we shall make use of information given in ITC-A

or, in more detail, in Volume A1 of International Tables for

Crystallography (Wondratschek & Müller, 2004).

Consider a lattice type g and let G be the corresponding

space-group type. Find for G those maximal translation-

engleiche (i.e. type I) subgroup types that occur in Table 1.

Examples:

(i) g = oC. P2/m appears once and C2/m twice in the list of

maximal subgroups of type I of G = Cmmm.

(ii) g = cP. A set of three conjugate P4/mmm and a set of

four conjugate R3m appear in the list of maximal subgroups of

type I of G = Pm3m.

This procedure leads to the result shown in Fig. 2.

For discussing the numbers of subgroups shown in Fig. 2,

the definition of conventional cells, as given in Part 2 of ITC-

A, is needed. This is shown in Table 2 for lattices in three

dimensions.

Alternatively, two lattice systems, hexagonal and rhombo-

hedral, are combined in the hexagonal crystal family, where

hR is considered as a rhombohedrally centred hexagonal

lattice instead of a primitive rhombohedral lattice.

Fig. 2 shows the changes of lattice types that are possible in

phase transitions where the lattice changes continuously: the

corresponding pairs of lattice types are connected by lines.

Note that the two types of these pairs always belong to

different crystal families, whence they have different

conventional bases.

Let us now discuss the numbers of subgroups shown in

Fig. 2.

A rhombohedral deformation of the conventional cubic cell

lets only one of the four threefold axes survive, transforming

the lattice types cP, cF and cI into hR. A tetragonal defor-

mation of the conventional cubic cell lets only one of the

three fourfold axes survive, transforming cP into tP, cF and cI

into tI.

The plane perpendicular to the sixfold axis of a lattice of

type hP contains three pairs of mutually orthogonal twofold

axes. An orthorhombic deformation lets only one of these

three pairs survive, transforming hP into oC.

A plane perpendicular to the fourfold axis of a tetragonal

lattice cuts the conventional tetragonal cell into a square,

which contains two pairs of mutually orthogonal twofold axes,

parallel either to the edges or the diagonals of the square. An

orthorhombic deformation lets only one of these two pairs

survive, transforming tP either into oP or oC, and tI either into

oI or oF, depending on whether the square is deformed into a

rectangle or a rhombus.

Perpendicular to the threefold axis in a primitive rhombo-

hedral cell, there are three twofold axes at 120� one to

another. A monoclinic deformation of this cell can be done in

three ways, preserving one of the twofold axes and trans-

forming hR into mC.

A monoclinic deformation of the conventional ortho-

rhombic cell preserves only one of the three mutually

perpendicular twofold orthorhombic axes. In all three cases

oP is transformed into mP whereas oF and oI are transformed

into mC. The type oC is transformed into mP if the twofold
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Figure 2
The Bravais type of the three-dimensional lattice at the upper end of a
line is a special case of the type at its lower end. Solid lines indicate
normal subgroups, dashed lines sets of conjugate subgroups. The number
of conjugate groups in a set is equal to the subgroup index, i.e. the
quotient of the orders of the corresponding point groups (4 for the
transition cubic to rhombohedral and 3 in the other cases).

Table 2
Conventional bases for the seven lattice systems.

Note that Gruber (2002) used stricter conventions, which generally depend also on the lattice type, e.g. a < b < c for oP, oF and oI.

Crystal family Lattice system Holohedry Restrictions Free parameters Lattice types

Cubic Cubic m3m |a| = |b| = |c| = a, � = � = � = 90� a cP, cF, cI
Tetragonal Tetragonal 4/mmm |a| = |b| = a, � = � = � = 90� a, c tP, tI
Hexagonal Hexagonal 6/mmm |a| = |b| = a, � = � = 90�, � = 120� a, c hP

Rhombohedral 3m |a| = |b| = |c| = a, � = � = � a, � hR
Orthorhombic Orthorhombic mmm � = � = � = 90� a; b; c oP, oS, oF, oI
Monoclinic Monoclinic 2/m � = � = 90� (b unique) a; b; c, � mP, mS

� = � = 90� (c unique) a; b; c, �
Anorthic Anorthic 1 a; b; c, �, �, � aP
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Table 3
Metric relations between the conventional unit cells of lattice types related by conjugate subgroups, i.e. joined by dashed lines in Fig. 2.

‘hR, hex’ considers hR as a rhombohedrally centred hexagonal lattice, ‘hR, rho’ considers hR as a primitive rhombohedral lattice; d0 = �a0 � b0.

Lattice
types
L1! L2

Corresponding
space-group
types

Basis a0, b0, c0 of conventional cell for L2 expressed
in terms of basis a, b, c of conventional cell for L1 Det

Limiting case
of L1 for which it
becomes L2

Basis a, b, c of conventional cell for L1

expressed in terms of basis a0, b0, c0

of conventional cell for L2

a0 b0 d0 c0 a b c

hR, hex
! cP

R3m
! Pm3m

1
3(2a+b+c) 1

3(�a+b+c) �1
3(a+2b�c) 1

3 c = 1
2(61/2) a a0�b0 b0�c0 a0+b0+c0

1
3(2a+b+c) �1

3(�a+b+c) 1
3(a+2b�c) a0+b0 �b0+c0 a0�b0�c0

�1
3(2a+b+c) 1

3(�a+b+c) 1
3(a+2b�c) �a0�b0 b0+c0 �a0+b0�c0

�1
3(2a+b+c) �1

3(�a+b+c) �1
3(a+2b�c) �a0+b0 �b0�c0 �a0�b0+c0

hR, hex
! cF

R3m
! Fm�33m

�1
3(4a+2b�c) 1

3(2a�2b+c) 1
3(2a+4b+c) 4

3 c = 61/2 a 1
2(�a0+b0) 1

2(�b0+c0) a0+b0+c0

�1
3(4a+2b�c) �1

3(2a�2b+c) �1
3(2a+4b+c) 1

2(�a0�b0) 1
2(b0�c0) a0�b0�c0

1
3(4a+2b�c) 1

3(2a�2b+c) �1
3(2a+4b+c) 1

2(a0+b0) 1
2(�b0�c0) �a0+b0�c0

1
3(4a+2b�c) �1

3(2a�2b+c) 1
3(2a+4b+c) 1

2(a0�b0) 1
2(b0+c0) �a0�b0+c0

hR, hex
! cI

R3m
! Im3m

�1
3(2a+b�2c) 1

3(a�b+2c) 1
3(a+2b+2c) 2

3 c = 1
4(61/2) a �a0+b0 �b0+c0 1

2(a0+b0+c0)

�1
3(2a+b�2c) �1

3(a�b+2c) �1
3(a+2b+2c) �a0�b0 b0�c0 1

2(a0�b0�c0)
1
3(2a+b�2c) 1

3(a�b+2c) �1
3(a+2b+2c) a0+b0 �b0�c0 1

2(�a0+b0�c0)
1
3(2a+b�2c) �1

3(a�b+2c) 1
3(a+2b+2c) a0�b0 b0+c0 1

2(�a0�b0+c0)

hR, rho
! cP

R3m
! Pm3m

a b c 1 cos � = 0
! � = 90�

a0 b0 c0

a �b �c a0 �b0 �c0

�a b �c �a0 b0 �c0

�a �b c �a0 �b0 c0

hR, rho
! cF

R3m
! Fm3m

�a+b+c a�b+c a+b�c 4 cos � = 1
2

! � = 60�
1
2(b0+c0) 1

2(c0+a0) 1
2(a0+b0)

�a+b+c �a+b�c �a�b+c 1
2(�b0�c0) 1

2(�c0+a0) 1
2(a0�b0)

a�b�c a�b+c �a�b+c 1
2(b0�c0) 1

2(�c0�a0) 1
2(�a0+b0)

a�b�c �a+b�c a+b�c 1
2(�b0+c0) 1

2(c0�a0) 1
2(�a0�b0)

hR, rho
! cI

R3m
! Im3m

b+c a+c a+b 2 cos � = �1
3

! � = 109.47�
1
2(�a0+b0+c0) 1

2(a0�b0+c0) 1
2(a0+b0�c0)

b+c �a�c �a�b 1
2(�a0�b0�c0) 1

2(a0+b0�c0) 1
2(a0�b0+c0)

�b�c a+c �a�b 1
2(a0+b0�c0) 1

2(�a0�b0�c0) 1
2(�a0+b0+c0)

�b�c �a�c a+b 1
2(a0�b0+c0) 1

2(�a0+b0+c0) 1
2(�a0�b0�c0)

tP
! cP

P4/mmm
! Pm3m

a b c 1 c = a a0 b0 c0

c a b b0 c0 a0

b c a c0 a0 b0

tI
! cF

I4/mmm
! Fm3m

a+b �a+b c 2 c = 21/2 a 1
2(a0�b0) 1

2(a0+b0) c0

c a+b �a+b 1
2(b0�c0) 1

2(b0+c0) a0

�a+b c a+b 1
2(c0�a0) 1

2(c0+a0) b0

tI
! cI

I4/mmm
! Im3m

a b c 1 c = a a0 b0 c0

c a b b0 c0 a0

b c a c0 a0 b0

oS
! hP

Cmmm
! P6/mmm

�1
2(a+b) 1

2(a�b) b c 1
2 a = 31/2 b �a0+b0 d0 c0

b �1
2(a+b) 1

2(a�b) c �b0+d0 a0 c0

1
2(a�b) b �1

2(a+b) c �d0+a0 b0 c0

mS
! hR,
hex

C12/m1
! R3m

�1
2(3a+b+2c) 1

2(3a�b+2c) b c 3
2 cos � = �2c/(3a)

and
9a2 = 3b2 + 4c2

1
3(�a0+b0�2c0) d0 c0

b �1
2(3a+b+2c) 1

2(3a�b+2c) c 1
3(�b0+d0�2c0) a0 c0

1
2(3a�b+2c) b �1

2(3a+b+2c) c 1
3(�d0+a0�2c0) b0 c0

A112/m
! R3m

�1
2(3b+c+2a) 1

2(3b�c+2a) c a cos � = �2a/(3b)
and
9b2 = 3c2 + 4a2

c0 1
3(�a0+b0�2c0) d0

c �1
2(3b+c+2a) 1

2(3b�c+2a) a c0 1
3(�b0+d0�2c0) a0

1
2(3b�c+2a) c �1

2(3b+c+2a) a c0 1
3(�d0+a0�2c0) b0

mS
! hR,
rho

C12/m1
! R3m

�1
2(a+b) a+c �1

2(a�b) 1
2 cos � = �2c/(3a)

and
9a2 = 3b2 + 4c2

�a0�c0 �a0+c0 a0+b0+c0

�1
2(a�b) �1

2(a+b) a+c �b0�a0 �b0+a0 a0+b0+c0

a+c �1
2(a�b) �1

2(a+b) �c0�b0 �c0+b0 a0+b0+c0

A112/m
! R3m

�1
2(b+c) a+b �1

2(b�c) cos � = �2a/(3b)
and
9b2 = 3c2 + 4a2

a0+b0+c0 �a0�c0 �a0+c0

�1
2(b�c) �1

2(b+c) a+b a0+b0+c0 �b0�a0 �b0+a0

a+b �1
2(b�c) �1

2(b+c) a0+b0+c0 �c0�b0 �c0+b0



axis perpendicular to the C-face survives, into mC if one of the

two twofold axes in the C-face survives.

Finally, an anorthic deformation removes the twofold

monoclinic axis and transforms mP and mC into aP.

In two dimensions one obtains Fig. 3.

Note that the partially ordered set formed by the two-

dimensional lattice types mp, op, oc, tp and hp has the same

structure as the partially ordered set formed by mP, oP, oC, tP

and hP, as indicated by the notation.

4. Metric relations between conventional bases of
‘neighbouring’ lattice types

In this section we express the conventional basis of each lattice

type in terms of the conventional basis of each lattice type that

is minimally more general. In the case of rhombohedral

lattices both conventions are considered in Table 3, the one

where a primitive cell is used for hR and the one where a

rhombohedrally centred hexagonal cell is used in the usual

obverse setting with lattice points at 0, 0, 0, 2
3 ;

1
3 ;

1
3 and 1

3 ;
2
3 ;

2
3.

In the case of conjugate subgroups the various expressions

for a0, b0, c0 are equivalent by symmetry. For the transitions hR

to cubic, the three other possibilities are obtained from the

first one keeping one of the vectors a0, b0, c0 and changing the

signs of the other two. For the transitions tetragonal to cubic,

the three possibilities are related by cyclic permutations a0 !

b0 ! c0 ! a0; for the transition oS to hP they are related by

cyclic permutations a0 ! b0 ! d0 ! a0. Note that for the

transition mS to hR the three possibilities are related by cyclic

permutations a0 ! b0 ! c0 ! a0 if hR is considered as a

primitive rhombohedral lattice, and by a0 ! b0 ! d0 ! a0 if

hR is considered as a rhombohedrally centred hexagonal

lattice.

The transition mS! hR is given (for hR, hex and hR, rho)

first with unique monoclinic axis b, then with axis c.

The column ‘Det’ in Tables 3 and 4 gives the determinant

of the matrix M expressing a0, b0, c0 in terms of a, b, c. It equals

the number of lattice points in a conventional cell of L2

divided by the number of lattice points in a conventional cell

of L1.

The restrictions given in Table 2 do not determine a unique

conventional basis. In accordance with Volume A1 of Inter-

national Tables for Crystallography (Wondratschek & Müller,

2004), conventional bases for lattice-type pairs L1 and L2 have

been chosen in Tables 3 and 4 such that the matrix M becomes
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Table 4
Metric relations between the conventional unit cells of lattice types related by normal subgroups, i.e. joined by full lines in Fig. 2.

Lattice types
L1! L2

Corresponding
space-group
types

Basis a0, b0, c0 of conventional cell
for L2 expressed in terms of basis
a, b, c of conventional cell for L1 Det

Limiting case of
L1 for which it
becomes L2

Basis a, b, c of conventional cell
for L1 expressed in terms of basis
a0, b0, c0 of conventional cell for L2

a0 b0 c0 a b c

oP! tP Pmmm! P4/mmm a b c 1 b = a a0 b0 c0

oC! tP Cmmm! P4/mmm 1
2(a+b) 1

2(�a+b) c 1
2 b = a a0�b0 a0+b0 c0

oF! tI Fmmm! I4/mmm 1
2(a+b) 1

2(�a+b) c 1
2 b = a a0�b0 a0+b0 c0

oI! tI Immm! I4/mmm a b c 1 b = a a0 b0 c0

mP! oP P112/m! Pmmm a b c 1 � = 90� a0 b0 c0

P12/m1! Pmmm a b c � = 90� a0 b0 c0

P12/m1! Pmmm b c a � = 90� c0 a0 b0

mP! oS P112/m! Cmmm a+b �a+b c 2 b = a 1
2(a0�b0) 1

2(a0+b0) c0

mS! oS C12/m1! Cmmm a b c 1 � = 90� a0 b0 c0

mS! oS C12/m1! Cmmm b �a c 1 � = 90� �b0 a0 c0

mS! oF A112/m! Fmmm 2a+b b c 2 cos � = �b/(2a) 1
2(a0�b0) b0 c0

C12/m1! Fmmm a b 2c+a cos � = �a/(2c) a0 b0 1
2(c0�a0)

C12/m1! Fmmm b �a 2c+a cos � = �c/(2b) �b0 a0 1
2(b0+c0)

mS! oI A112/m! Immm �b�a a c 1 cos � = �a/b b0 �a0�b0 c0

C12/m1! Immm c b �a�c cos � = �c/a �c0�a0 b0 a0

C12/m1! Immm b c a+c cos � = �b/c �b0+c0 a0 b0

aP! mP P1! P12/m1 a b c 1 � = � = 90� a0 b0 c0

P1! P112/m a b c � = � = 90� a0 b0 c0

aP! mS P1! C12/m1 a+b �a+b c 2 b = a, � = � 1
2(a0�b0) 1

2(a0+b0) c0

P1! A112/m a b+c �b+c b = c, � = � a0 1
2(b0�c0) 1

2(b0+c0)

Figure 3
The type of the two-dimensional lattice at the upper end of a line is a
special case of the type at its lower end. Solid lines indicate normal
subgroups, dashed lines sets of conjugate subgroups.



as simple as possible (e.g. M is the identity matrix for each of

the transitions aP ! mP ! oP ! tP ! cP). As a conse-

quence, the conditions given in the column ‘Limiting case of

L1 for which it becomes L2’ of Tables 3 and 4 take a particu-

larly simple form. This column contains two conditions that

must be satisfied for the transitions mS! hR and anorthic!

monoclinic, in accordance with Fig. 1, which shows that the

number of independent lattice parameters is reduced by 2 in

these cases.

Remark to Table 4: for the transitions monoclinic to

orthorhombic, the unique monoclinic axis is the orthorhombic

axis c0 in the first, b0 in the second and a0 in the third line; for

the transitions anorthic to monoclinic, the unique monoclinic

axis is b0 in the first line, c0 in the second.

5. Applications

Let us consider two applications to continuous equi-

translation phase transitions. Both concern transitions mS$

hR, hR being considered as a rhombohedrally centred hexa-

gonal lattice in the first example and as a primitive rhombo-

hedral lattice in the second.

(i) Przeniosło et al. (2014) measured the monoclinic defor-

mation of the crystal lattice of hematite (�-Fe2O3) at room

temperature. Hematite is paramagnetic with space group R3c

above its Néel temperature TN = 955 K. Below TN it is weakly

ferromagnetic (canted antiferromagnet) with space group

C2/c down to the Morin temperature TM = 260 K. The lattice

type is therefore mC at room temperature and changes to hR

at TN. Equations A1–A3 in Appendix A of Przeniosło et al.

(2014) show that they chose a conventional C-centred

monoclinic cell with basis a = 1
3(�a0 + b0 � 2c0), b = �a0 � b0,

c = c0, where a0, b0, c0 is the conventional basis of the

rhombohedrally centred hexagonal cell, as suggested in

our Table 3. The authors found for their sample I at

room temperature: a = 961.935 (12), b = 503.575 (7), c =

1375.277 (17) pm and � = 162.4049 (2)�. Neglecting experi-

mental uncertainties, we obtain from the last column

of Table 3 that the lattice becomes rhombohedral if

� = arccos[�2c/(3a)] = 162.3889� and a = 1
3(3b2 + 4c2)1/2 =

961.845 pm.

It follows that although the measurement was performed

approximately 660 K below the phase-transition temperature,

a deviates by only 0.1 pm and � by only 1 minute of arc from

the values for a rhombohedral lattice. The calculations given

in Table 2 of Przeniosło et al. (2014), which take account of

experimental uncertainties, lead to a similar deviation for a

and an even smaller deviation for � of the order of 1 second of

arc. For their sample VI, the deviation for � even has opposite

sign. We conclude that the magnetic ordering, which destroys

the trigonal symmetry, affects the lattice parameters so little

that high-resolution synchrotron radiation diffraction is

necessary to measure the effect.

(ii) Pyridinium tetrafluoroborate [C5H6N]+BF4
� has been

investigated by Czarnecki et al. (1998). It is paraelectric at

room temperature with space group R3m and undergoes at T

= 238.7 K a continuous transition to a ferroelectric phase with

space group C2. It follows that the lattice type is hR at room

temperature and changes to mC at T. Using high-resolution

neutron powder diffraction, Czarnecki et al. (1998) found for

the conventional primitive rhombohedral cell a0, b0, c0 at

293 K: |a0| = |b0| = |c0| = a0 = 567.074 (7) pm and �0 = �0 = � 0 =

97.305 (1)�. The entry at the bottom of our Table 3 tells us that

C-centring the conventional monoclinic cell with basis a = �a0

� c0, b = �a0 + c0, c = a0 + b0 + c0 produces a primitive cell that

coincides with the rhombohedral one in the limiting case that

mC becomes hR. According to their Fig. 3, Czarnecki et al.

(1998) chose a different conventional monoclinic cell ~aa = a0 +

c0, ~bb = a0 � c0, ~cc = b0. They found at 230 K: ~aa = 734.68 (2), ~bb =

839.95 (2), ~cc = 571.14 (2) pm and ~�� = 101.952 (2)�. With our

cell choice a = �~aa, b = � ~bb, c = ~aa + ~cc, we obtain at 230 K:

a = ~aa, b = ~bb, c = 831.96 pm and � = 137.808�. It follows

that arccos[�2c/(3a)] � � = 1.212� and 1
3[3b2 + 4c2]1/2

� a =

2.07 pm, showing that 8.7 K below the transition temperature

T the lattice already differs considerably from a rhombohedral

one, in contrast to the first example.

6. Discussion and conclusions

Figs. 1–3 show basic relations between the lattice types. These

relations are of importance also for applications: they tell us

the changes of lattice type possible in continuous equi-

translation phase transitions, as discussed e.g. by Landau &

Lifshitz (1980) or Burns & Glazer (1990). They can be useful

also in cases of twinning by ‘metric merohedry’ as defined by

Nespolo & Ferraris (2000). The use of Fig. 2 and of Tables 3

and 4, which give metric relations between the conventional

bases of lattice types joined by lines in Fig. 2, has been illu-

strated with two examples. Tables 3 and 4 also illustrate how

the distinction between conjugate and normal subgroups

made in Fig. 2 affects the relation between the conventional

bases.

For all these reasons, it is suggested that figures like Figs. 2

and 3 and tables like Tables 3 and 4 be introduced in future

editions of ITC-A. Symmetry aspects are central to ITC-A; its

Fig. 10.1.3.2 and Fig. 10.1.3.1 show relations between the types

of crystallographic point groups in three and two dimensions

in a similar way as our Figs. 2 and 3 give relations between the

lattice types. To balance the information given in ITC-A on

the point group and lattice aspects of the space groups, also

the Bravais lattice type should be given in the banner line of

each space-group type.
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