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Seven corrections are made and several supplementary equations are added to

the article by Yoshimura [Acta Cryst. (2015), A71, 368–381].

On p. 371, left column, near the top, just after ‘the index (i) =

(1, 2) . . . dispersion surface’, the following comment should

be added: ‘the upper sine in equations (5a), (5b) refers to the

case of i = 1, and the lower sine to the case of i = 2’. On p. 371,

right column, near the bottom, just after ‘the indices (i, j) =

(1, 2) . . . , respectively’, the following comment should be

added: ‘the upper sign in equations (15a) to (15d) refers to the

case of j = 1, and the lower sine to the case of j = 2’. Equations

(14b), (14c) are incorrect. They must be corrected to
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In these corrections, the last terms in the first exponential

functions on the right-hand side in the second equations were

corrected.

On p. 372, right column, an error is involved in equation

(22a). It must be corrected to
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In this correction, the last term in the second bracket on the

right-hand side was corrected. On p. 373, left column, equation

(24b) is incorrect. It must be corrected to
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On p. 376, left column, the description of ‘tgap = 0.024 mm’ is

incorrect. It must be corrected to ‘tgap = 0.24 mm’. The

mentioned errors in equations (14b), (14c) and (24b) do not

influence the calculation of equations (20) to (23b), since the

correct expressions as above were used in deriving them. The

mentioned error in equation (22a) does not influence the

computations of the presented images and graphs in the paper,

since the computations were all made correctly using the

correct expression as mentioned above; the errors are only in

the text.

As a supplement to the previous presentation of the

equation for the diffracted – or G – wave image intensity IgðrÞ

in equation (20), the equation for the corresponding trans-

mitted – or O – wave image intensity IoðrÞ is added as in the

following:

IoðrÞ ¼
P
i;j

E
i;j
oo0 ðrÞ þ E

i;j
go0 ðrÞ

h i












2

¼ Ioo0 ðrÞ þ Igo0 ðrÞ þ AoðrÞ cos �oðrÞ þ BoðrÞ sin �oðrÞ

ð49Þ

with

�oðrÞ ¼ 2�½�g � ðr� roÞ� þ K�got2 � untgap=�g

� 2�ð�g � K̂KoÞ � ðTb0=�oÞ ð50Þ

Ioo0 ðrÞ ¼
1

4
exp �

1

2
�o

1

�o

þ
1

�g

� �
ðt1 þ t2Þ

� 	

�

"
1þ

u2
r

u2
r þ U2

r

� �
coshð2K�21;it1Þ þ

2ur

ðu2
r þ U2

r Þ
1=2

� sinhð2K�21;it1Þ þ
U2

r

u2
r þ U2

r

cosð2K�21;rt1Þ

#

�

"
1þ

u2
or

u2
or þ U2

r

� �
coshð2K�o;it2Þ þ

2uor

ðu2
or þ U2

r Þ
1=2

� sinhð2K�o;it2Þ þ
U2

r

u2
or þ U2

r

cosð2K�o;rt2Þ

#
ð51aÞ

Igo0 ðrÞ ¼
1

4
exp �

1

2
�o

1

�o

þ
1

�g

� �
ðt1 þ t2Þ

� 	

�
U2

r

ðu2
r þ U2

r Þ

U2
r

ðu2
gr þ U2

r Þ

�
coshð2K�21;it1Þ

� cosð2K�21;rt1Þ
��

coshð2K�g;it2Þ � cosð2K�g;rt2Þ
�
ð51bÞ

AoðrÞ ¼
1

2
exp �

1

2
�o

1

�o

þ
1

�g

� �
ðt1 þ t2Þ

� 	

�
Ur

ðu2
r þ U2

r Þ
1=2

Ur

ðu2
gr þ U2

r Þ
1=2

n
fsinhð2K�21;it1Þ

� ½cosðK��;rt2Þ sinhðK�þ;it2Þ þ cosðK�þ;rt2Þ

� sinhðK��;it2Þ� � sinð2K�21;rt1Þ½sinðK��;rt2Þ

� coshðK�þ;it2Þ þ sinðK�þ;rt2Þ coshðK��;it2Þ�g

þ
uor

ðu2
or þ U2

r Þ
1=2
fsinhð2K�21;it1Þ½cosðK��;rt2Þ

� coshðK�þ;it2Þ � cosðK�þ;rt2Þ coshðK��;it2Þ�

� sinð2K�21;rt1Þ � ½sinðK��;rt2Þ sinhðK�þ;it2Þ

� sinðK�þ;rt2Þ sinhðK��;it2Þ�g

þ
ur

ðu2
r þ U2

r Þ
1=2
½coshð2K�21;it1Þ � cosð2K�21;rt1Þ�

� ½cosðK��;rt2Þ sinhðK�þ;it2Þ þ cosðK�þ;rt2Þ

� sinhðK��;it2Þ� þ
ur

ðu2
r þ U2

r Þ
1=2

uor

ðu2
or þ U2

r Þ
1=2

� ½coshð2K�21;it1Þ � cosð2K�21;rt1Þ�

� ½cosðK��;rt2Þ coshðK�þ;it2Þ � cosðK�þ;rt2Þ

� coshðK��;it2Þ�

o
ð52aÞ

BoðrÞ ¼
1

2
exp �

1

2
�o

1

�o

þ
1

�g

� �
ðt1 þ t2Þ

� 	

�
Ur

ðu2
r þ U2

r Þ
1=2

Ur

ðu2
gr þ U2

r Þ
1=2

n
f� sinhð2K�21;it1Þ

� ½sinðK��;rt2Þ coshðK�þ;it2Þ þ sinðK�þ;rt2Þ

� coshðK��;it2Þ� � sinð2K�21;rt1Þ½cosðK��;rt2Þ

� sinhðK�þ;it2Þ þ cosðK�þ;rt2Þ sinhðK��;it2Þ�g

þ
uor

ðu2
or þ U2

r Þ
1=2
f� sinhð2K�21;it1Þ½sinðK��;rt2Þ

� sinhðK�þ;it2Þ � sinðK�þ;rt2Þ sinhðK��;it2Þ�

� sinð2K�21;rt1Þ � ½cosðK��;rt2Þ coshðK�þ;it2Þ

� cosðK�þ;rt2Þ coshðK��;it2Þ�g

�
ur

ðu2
r þ U2

r Þ
1=2
½coshð2K�21;it1Þ � cosð2K�21;rt1Þ�

� ½sinðK��;rt2Þ coshðK�þ;it2Þ þ sinðK�þ;rt2Þ

� coshðK��;it2Þ� �
ur

ðu2
r þ U2

r Þ
1=2

uor

ðu2
or þ U2

r Þ
1=2

� ½coshð2K�21;it1Þ � cosð2K�21;rt1Þ�

� ½sinðK��;rt2Þ sinhðK�þ;it2Þ � sinðK�þ;rt2Þ

� sinhðK��;it2Þ�

o
: ð52bÞ

The numbering of the equations here is continued from the

last equation (48) in the original paper (Yoshimura, 2015).

E
i;j
oo0 ðrÞ and E

i;j
go0 ðrÞ in equation (49) are as given in equations

(14a), (14c), respectively.
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Through similar calculations to those written in the right-

hand side column on p. 373, the term of interference phase

�oðrÞ in equation (50) can be reduced to

�oðrÞ ¼ �oðrb0 Þ ¼ f2��gk � ½ðrb0 � roÞk � Ik� � untgap=�gg

ð53Þ

which is the same as �gðrÞ in equation (34) for the G-wave

image intensity (here, the symbol || denotes the component

parallel to the specimen surfaces). In the present case that

ðr� rb0 Þ k K̂Ko, part of the first term and the fourth term in

equation (50) cancel each other as follows:

2�½�g � ðr� rb0 Þ� � 2�ð�g � K̂KoÞðTb0=�oÞ

¼ 2�½�g � ðr� rb0 Þ� � 2�ð�g � K̂KoÞ � ½ðr� rb0 Þ � n�=ðK̂Ko � nÞ

¼ 0:

The moiré images of the O-wave in Figs. 14(a) and 14(b)

and the curves concerned in Figs. 15(a) and 15(b) were

computed using these equations (49), (51a)–(52b) and (53).
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A detailed and comprehensive theoretical description of X-ray diffraction moiré

fringes for a bicrystal specimen is given on the basis of a calculation by plane-

wave dynamical diffraction theory. Firstly, prior to discussing the main subject of

the paper, a previous article [Yoshimura (1997). Acta Cryst. A53, 810–812] on

the two-dimensionality of diffraction moiré patterns is restated on a thorough

calculation of the moiré interference phase. Then, the properties of moiré

fringes derived from the above theory are explained for the case of a plane-wave

diffraction image, where the significant effect of Pendellösung intensity

oscillation on the moiré pattern when the crystal is strained is described in

detail with theoretically simulated moiré images. Although such plane-wave

moiré images are not widely observed in a nearly pure form, knowledge of their

properties is essential for the understanding of diffraction moiré fringes in

general.

1. Introduction

Crystal diffraction moiré fringes were discovered by Mitsuishi

et al. (1951) in an electron micrograph of a graphite crystal and

have been actively studied in the field of electron diffraction

(Hashimoto & Uyeda, 1957; Pashley et al., 1957; Bassett et al.,

1958). In the X-ray field, Bonse & Hart (1965, 1966) observed

moiré fringes with X-ray interferometers from a silicon crystal,

Chikawa (1965, 1967) observed them with an epitaxically

grown CdS crystal and Lang & Miuscov (1965) observed them

from a quartz crystal with a crack. Many interesting obser-

vations of moiré fringes were then successively reported.

Brádler & Lang (1968) and Lang (1968) reported excellent

moiré fringes observed with superposed crystals (i.e. bicrystal)

of silicon and of quartz, respectively. Hart (1972) demon-

strated a full analysis of moiré dislocations in a moiré pattern

produced with an X-ray interferometer. Simon & Authier

(1968), Bonse et al. (1969) and Gerward (1973) reported moiré

fringes observed in ion-implanted silicon crystals. Although

Bonse et al. (1969) referred to their observed fringes as

‘translation fault’ fringes (Bonse & Hart, 1969), Ohler et al.

(1997) later explained that they are essentially moiré fringes.

Moiré fringes observed with a monolithic type bicrystal,

prepared by making a saw cut in a single crystal, were reported

by Hashizume et al. (1972) and Tanemura & Lang (1973).

Moiré fringes observed in a quartz crystal having etch tunnels

were reported by Iwasaki (1977). Following these early

studies, Jiang et al. (1990), Prieur et al. (1996), Ohler et al.

(1996, 1999) observed moiré fringes with SIMOX (separation

by implanted oxygen) silicon wafers, and analysed and

discussed them. In particular, Ohler et al. (1999) reported

excellent moiré fringes taken in the geometry of the Bragg

case. With a different aim from the above studies, Yoshimura
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(1989, 1991, 1996a) experimentally observed a strange oscil-

lation (non-projectiveness) of moiré fringes on the beam path

after emerging from a specimen crystal.

Whereas experimental studies have been actively

conducted, theoretical study of X-ray moiré fringes has not

received enough attention. This is in contrast with the study of

Pendellösung and related fringes, where good theoretical

studies have been made from an early stage (e.g., Kato,

1961a,b). The first theoretical description of diffraction moiré

fringes was given for the case of electron diffraction by

Hashimoto et al. (1961). However, this theory appeared much

too complicated for a neophyte to apply it to the X-ray case.

The first attempt to theoretically describe X-ray moiré fringes

was made by Simon & Authier (1968), where diffracted waves

carrying moiré interference from a bicrystal were expressed

on the basis of the Takagi–Taupin theory (Takagi, 1962) to

calculate the intensity of diffracted images. Tanemura & Lang

(1973) theoretically described the bicrystal moiré interference

on the basis of Kato’s spherical wave theory (Kato, 1961a,b).

Furthermore, a theory of bicrystal moiré was also given by

Bezirganyan & Aslanyan (1984a,b). Nevertheless, these

theories were unsatisfactory in that the process of double

diffraction producing the moiré interference was not

described in detail, and the results did not appear to be readily

applicable to other moiré observations.

In 1974, Kato published a diffraction theory for a crystal

having a misfit boundary, where a change in the reciprocal-

lattice vector �g is induced between two parts of a single

crystal as in a growth-sector boundary of crystals (Kato, 1974).

It would not be too much to say that all theoretical preli-

minaries for dealing with double diffraction under �g are

given there. However, Kato did not proceed to describe moiré

fringes. Polcarová (1978a,b, 1980), largely based on this theory

by Kato, calculated diffraction intensities from a crystal having

a misfit boundary, to a final form, but did not deal with moiré

fringes. Yoshimura performed a full calculation of moiré

fringes on the basis of Kato’s theory above, and has published

part of the results as an appendix (Yoshimura, 1989, 1996a)

and a short note (Yoshimura, 1997a). Although omitting to

publish the entire results is regretted now, the full description

would have had to be very long, and it was not the main

investigative theme of the author at that time. Apart from

Kato’s theory, Ohler & Härtwig (1999) published another

theoretical description of bicrystal moiré fringes using a

matrix formalism of dynamical diffraction (Berreman, 1976).

Furthermore, Haroutyunyan & Sedrakyan (1997) also

published a paper describing bicrystal moiré interference.

The motive for the study leading to this paper is to give an

explanation of the moiré image as shown in Fig. 1 (Yoshimura

1996b, 1997b), which was taken in a previous experiment on

the moiré-fringe oscillation (Yoshimura, 1996a). This moiré

image, though nearly of rotation moiré, has a feature of low-

contrast vertical bands extending from the top to the bottom

of the image. Furthermore, the moiré fringes locally bend to a

significant degree in these vertical bands, and fringe lines have

dislocation-like discontinuities (noted by arrows) despite the

absence of dislocations in the real lattice [called ‘pseudo-

moiré dislocations’ in Yoshimura (1996b)]. Such features were

not observed in previously reported moiré images. They

should also be explained for general interest. From the theo-

retical study of such experimental moiré images, it was found

that Pendellösung intensity oscillation and the additional

phase by an interspacing gap in the bicrystal have a significant

effect on the moiré pattern. (In addition, the unusualness of

this moiré pattern is considered to be related to the quasi-

plane-wave condition when taking this image.) Although this

work has been presented orally (e.g., Yoshimura, 2008), it has

not been published as a paper.

The first purpose of writing this paper is to publish the

above work. The second and main purpose is to present the

theory of diffraction moiré fringes in a full form on the basis of

Kato’s misfit-boundary diffraction theory. This will complete

the author’s theoretical description of moiré fringes which has

been given fragmentarily so far. Although the basic interest is

in the above-mentioned experimental moiré images, the

theory is described from a more general viewpoint. From the

author’s experience, the description of moiré fringes is much

more complicated than that of Pendellösung fringes and

related images. To give a comprehensive description, treat-

ment by plane-wave theory based on a schematic of the

dispersion surface of diffraction would be a good approach.

This paper will present such a treatment, with special attention

on added phases by the Pendellösung intensity oscillation and

by the interspacing gap as mentioned above. An exact and
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Figure 1
Experimental X-ray moiré image, the explanation of which was the
starting point of this study. Diffracted-wave image (G image). Taken in a
previous synchrotron experiment at PF, KEK, Japan (Yoshimura,
1996a,b), from a monolithic bicrystal specimen with Si 220 reflection
and a wavelength of � = 0.072 nm. The angular width of the incident beam
was 0.340 0, and the total thickness of the bicrystal was 3.35 mm (including
the gap thickness of 0.225 mm). The long vertical and horizontal lines are
the shadows of a platinum line stretched between the specimen and the
recording films for the purpose of the experiment. See text for more
details.



comprehensive description cannot help being long. Although

diffraction moiré fringes are no longer a hot topic of study, the

subject is still a branch of diffraction topography and crys-

tallography. This paper may contribute to future progress in

related research fields. In what follows, the moiré theory is first

described from a general viewpoint, and then a theoretical

explanation of the author’s previous moiré images by

experiment is given. The work is divided into two separate

publications, parts I and II.

2. Theoretical description of bicrystal moiré fringes

As a model for developing the theory, we consider a bicrystal

as shown in Fig. 2, which is composed of parallel-sided crystals

A and B having a difference �g in their reciprocal-lattice

vectors, and a narrow interspace gap between them. For

simplicity, the surfaces of crystals A and B are all assumed to

be parallel to one another, but the angle between the

crystal surfaces and the diffracting lattice plane is taken to be

arbitrary, so that the theory can deal with the asymmetric

Laue case. If the dielectric susceptibility in crystal A having

reciprocal-lattice vector g is given by

�ðrÞ ¼
P

g

�g exp 2�iðg � rÞ; ð1Þ

then that in crystal B having the reciprocal-lattice vector

g0 ¼ gþ�g is written as

�0ðrÞ ¼
P

g

�g exp 2�i½g � ðr� uÞ�

¼
P

g

�g exp 2�ifðg � rÞ þ ½�g � ðr� roÞ�g

¼
P

g

½�g exp�2�ið�g � roÞ� exp 2�iðg0 � rÞ ð2Þ

[because �g ¼ �gradðg � uÞ]. Here, �g is the g-th Fourier

component of �ðrÞ and �0ðrÞ; u is the displacement in the real

lattice of crystal B relative to that in crystal A, corresponding

to the occurrence of �g; ro is the position vector denoting the

point of u ¼ 0 on surface b of crystal B. This origin ro is not a

very special point, but is explicitly written here for a later

discussion.

The dispersion surface associated with the double diffrac-

tion of the moiré interference is shown in Fig. 2. By an incident

plane wave

EðrÞ ¼ exp iðKe�rÞ ð3Þ

upon the bicrystal, transmitted (O) and diffracted (G) waves

are first excited in crystal A (tie points D(1), D(2)). As shown in

Kato [1974, equations (4-105)–(4-108)], the excited O and G

waves after emerging from crystal A are written and calculated

as follows:

Ei
oðrÞ ¼ Ci

o exp ifðKe � raÞ þ ½k
i
o � ðra0 � raÞ� þ ½K

i
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i
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at1 exp iðKe � rÞ; ð4aÞ
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i
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þ ½Ki
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g exp�iðK�i
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ð4bÞ

Here, Ci
o and Ci

g are the amplitudes of the excited waves, and

are given as
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Keð¼ AoO
��!
Þ is the wavevector of the initial incident wave;

ki
oð¼ DðiÞO

���!
Þ and ki

gð¼ DðiÞG
���!
Þ are the wavevectors of the

excited waves propagating in crystal A, and Ki
o (¼ AoO

��!
) and

Ki
g (¼ AgG

��!
) are those of the waves after emerging from crystal

A. They are given by

ki
o ¼ Ke � K�i

an ð6aÞ

ki
g ¼ Ke � K�i

anþ 2�g ð6bÞ
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Figure 2
Dispersion-surface construction for the double diffraction in a bicrystal,
with �g 6¼ 0. OG

�!
¼ 2�g, O0G0

��!
¼ 2�g0. See text for details.



Ki
o ¼ Ke � K�i

ana þ K�i
a0;ona0 ¼ Ke ð7aÞ

Ki
g ¼ Ke þ 2�g� K�i

ana þ K�i
a0;gna0

¼ Ke þ 2�gþ ðun=�gÞn; ð7bÞ

K in the above equations is the wavenumber in vacuum; the

index ðiÞ ¼ ð1; 2Þ denotes the branch of the dispersion surface;

ra and ra0 are position vectors denoting surfaces a and a0, and r

refers to an observation point thought to be situated behind

the crystal; na and na0 are the normals to surfaces a and a0, and

are set equal to the common surface normal n, in accordance

with the assumption in the present theory; ta ¼ ½n � ðr� raÞ�

and Ta0 ¼ ½n � ðr� ra0 Þ�; t1 ¼ ta � Ta0 is the thickness of crystal

A; �o ¼ ðK̂Ko � nÞ and �g ¼ ðK̂Kg � nÞ; K̂Ko and K̂Kg denote unit

vectors along the directions of the transmitted and diffracted

waves, respectively. �i
a, �i

a0;o and �i
a0;g are the Anpassung asso-

ciated with the excitation and emergence of waves in crystal A,

and are graphically represented as K�i
an ¼ AoDðiÞ

���!
,

K�i
a0;on ¼ AoDðiÞ

���!
, K�i

a0;gn ¼ AgDðiÞ
���!

in Fig. 2; they are given in

equation form by

K�i
a ¼ �

1
2 K�o=�o �

1
2 u� ðu2 þ U2Þ

1=2
� �

=�g; ð8Þ

K�i
a0;o ¼ �

1
2 K�o=�o �

1
2 �o=�g

	 

u� ðu2 þ U2Þ

1=2
� �

=�o

¼ K�i
a; ð9aÞ

K�i
a0;g ¼ �

1
2 K�o=�g �

1
2 �u� ðu2 þ U2Þ

1=2
� �

=�g

¼ K�i
a þ un=�g; ð9bÞ

u in equations (5a), (5b), (8) and (9a), (9b) is the deviation

parameter employed in this theory, for the excitation of O and

G waves in crystal A; it is given by

u ¼ K�� sin 2�B þ
1
2K�o 1� �g=�o

	 

: ð10Þ

un in equations (4b), (7b) and (9b) is given by

un ¼ u� 1
2K�o 1� �g=�o

	 

¼ K�� sin 2�B: ð11Þ

Here, �B is the Bragg angle; �� ¼ � � �B (¼ LAo=K in Fig. 2)

is the deviation angle from the exact Bragg position, � being

the incidence glancing angle to the diffracting lattice plane, on

surface a; U is given by

U ¼ KCð�g��gÞ
1=2
ð�g=�oÞ

1=2; ð12Þ

where C is the polarization factor. The relationships between

the above deviation parameter u and those used in other

literature, W, � etc. (Kikuta & Kohra, 1970; Authier, 2004) are

W ¼ u=U; � ¼ u=U.

Going back to equations (4a), (4b), each of the O and G

waves emerging from crystal A excites another transmitted

wave and diffracted wave on the incidence upon crystal B.

Then the dispersion surface is displaced due to the change in

the reciprocal-lattice vector from g to g0, for each of the

excitations by the O and G waves from crystal A. As treated in

Kato (1974), the displaced dispersion surfaces are superposed

onto that for crystal A so that the Lorentz point L is common;

then, the reciprocal-lattice points O0 and G0 for crystal B are

relocated consequently to the new positions so that

OO0
��!
¼ �½2�ð�g � K̂KgÞ= sin 2�B�xo ð13aÞ

GG0
��!
¼ ½2�ð�g � K̂KoÞ= sin 2�B�xg ð13bÞ

as shown in Fig. 2. The tie points for the secondly excited

waves in crystal B are displaced as DðiÞ ! DðiÞo and DðiÞ ! DðiÞg

on the common dispersion surface. (It can easily be

confirmed that the result of calculation using this scheme is the

same as that when the displaced dispersion surfaces are given

separately.) We denote the waves excited by the O wave as the

(O, O0) and (O;G0) waves (tie points Dð1Þo , Dð2Þo ), and those

excited by the G wave as the (G;O0) and (G;G0) waves (tie

points Dð1Þg , Dð2Þg ). Following the way of the formulation of

equations (4a), (4b), these doubly diffracted waves after

emerging from crystal B can be written and calculated as

follows:

E
i;j
oo0 ðrÞ ¼ Ci

oC
i;j
oo0 exp i

�
ðKe � raÞ þ ½k

i
o � ðra0 � raÞ� þ ½K

i
o � ðrb � ra0 Þ�

þ ½ki;j
oo0 � ðrb0 � rbÞ� þ ½K

i;j
oo0 � ðr� rb0 Þ�

�
¼ Ci

oC
i;j
oo0 exp i

	
�K�i

at1 � K�i;j
b;oo0 t2



exp iðKe � rÞ; ð14aÞ

E
i;j
og0 ðrÞ ¼ Ci

oC
i;j
og0 exp 2�iðg0 � rbÞ exp i

�
ðKe � raÞ þ ½k

i
o � ðra0 � raÞ�

þ ½Ki
o � ðrb � ra0 Þ� þ ½k

i;j
og0 � ðrb0 � rbÞ� þ ½K

i;j
og0 � ðr� rb0 Þ�

�
¼ Ci

oC
i;j
og0 exp i

�
�K�i

at1 � K�i;j
b;oo0 t2 þ unTb0=�g

� 2�ð�g � K̂KoÞTb0=�g

�
exp i½ðKe þ 2�g0Þ � r�; ð14bÞ

E
i;j
go0 ðrÞ ¼ Ci

gC
i;j
go0 exp 2�i½ðg � raÞ � ðg

0
� rbÞ� exp i

�
ðKe � raÞ

þ ½ki
g � ðra0 � raÞ� þ ½K

i
g � ðrb � ra0 Þ� þ ½k

i;j
go0 � ðrb0 � rbÞ�

þ ½Ki;j
go0 � ðr� rb0 Þ�

�
¼ Ci

gC
i;j
go0 exp i

�
�K�i

at1 � K�i;j
b;gg0 t2 þ unðTa0 � Tb0 Þ=�g

þ 2�ð�g � K̂KÞTb0=�o

�
exp i½ðKe � 2��gÞ � r�; ð14cÞ

E
i;j
gg0 ðrÞ ¼ Ci

gC
i;j
gg0 exp 2�iðg � raÞ exp i

�
ðKe � raÞ þ ½k

i
g � ðra0 � raÞ�

þ ½Ki
g � ðrb � ra0 Þ� þ ½k

i;j
gg0 � ðrb0 � rbÞ� þ ½K

i;j
gg0 � ðr� rb0 Þ�

�
¼ Ci

gC
i;j
gg0 exp i

	
�K�i

at1 � K�i;j
b;gg0 t2 þ unTa0=�g



� exp i½ðKe þ 2�gÞ � r�: ð14dÞ

Here, C
i;j
oo0 ;C

i;j
og0 and C

i;j
go0 ;C

i;j
gg0 are the amplitudes for the

secondly excited waves in crystal B, and are given by

C
i;j
oo0 ¼

1

2
1�

uo

ðu2
o þ U2Þ

1=2

� �
; ð15aÞ

C
i;j
og0 ¼ �

1

2

�o

�g

� �1=2 �g

��g

� �1=2
U

ðu2
o þ U2Þ

1=2
; ð15bÞ

C
i;j
go0 ¼ �

1

2

�g

�o

� �1=2 ��g

�g

� �1=2
U

ðu2
g þ U2Þ

1=2
; ð15cÞ

C
i;j
gg0 ¼

1

2
1�

ug

ðu2
g þ U2Þ

1=2

" #
; ð15dÞ

the indices (i; j) = (1, 2) denote the branch of the dispersion

surface for crystals A and B, respectively; uo and ug are the

deviation parameters for the excitation of (O;O0), (O;G0)
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waves and (G;O0), (G;G0) waves, respectively, and are given

by

uo ¼ u� 2�ð�g � K̂KgÞ; ð16aÞ

ug ¼ u� 2�ð�g=�oÞð�g � K̂KoÞ ð16bÞ

[see equations (5-68)–(5-71) in Kato (1974)]; ki;j
oo0 ð¼ DðjÞo O0

���!
Þ,

ki;j
og0 ð¼ DðjÞo G0

���!
Þ, ki;j

go0 ð¼ DðjÞg O0
���!

Þ and ki;j
gg0 ð¼ DðjÞg G0

���!
Þ are the wave-

vectors of waves denoted by the respective superscripts and

subscripts in crystal B, and Ki;j
oo0 ð¼ Aoo0O

0
���!

Þ, Ki;j
og0 ð¼ Aog0G

0
���!

Þ,

Ki;j
go0 ð¼ Ago0O

0
���!

Þ and Ki;j
gg0 ð¼ Agg0G

0
���!

Þ are the wavevectors after

emergence from crystal B, which are given as follows:

ki;j
oo0 ¼ Ki

o � K�i;j
b;oo0n; ð17aÞ

ki;j
og0 ¼ ki;j

oo0 þ 2�g0; ð17bÞ

k
i;j
gg0 ¼ Ki

g � K�i;j
b;gg0n; ð17cÞ

k
i;j
go0 ¼ ki;j

gg0 � 2�g0; ð17dÞ

K
i;j
oo0 ¼ k

i;j
oo0 þ K�i;j

b;oo0n; ð18aÞ

K
i;j
og0 ¼ k

i;j
og0 þ ½K�

i;j
b;oo0 þ un=�g � 2�ð�g � K̂KgÞ=�g�n; ð18bÞ

Ki;j
go0 ¼ k

i;j
go0 þ ½K�

i;j
b;gg0 � un=�g þ 2�ð�g � K̂KoÞ=�o�n; ð18cÞ

K
i;j
gg0 ¼ k

i;j
gg0 þ K�i;j

b;gg0n: ð18dÞ

The Anpassungs �i;j
b;oo0 and �i;j

b;gg0 in the above equations are

given in the form of K � Anpassung, as

K�i;j
b;oo0 ¼ �

1
2 K�o=�o þ

1
2 �uo � ðu

2
o þ U2Þ

1=2
� �

=�g; ð19aÞ

K�i;j
b;gg0 ¼ �

1
2 K�o=�g þ

1
2 ug � ðu

2
g þ U2Þ

1=2
� �

=�g; ð19bÞ

rb and rb0 in equations (14a)–(14d) are the position vectors

denoting surfaces b and b0; t2 is the thickness of crystal B;

Tb0 ¼ ½n � ðr� rb0 Þ�.

Additionally, equation (16b) for ug needs a detailed expla-

nation. The displacement of the excited point on the Sg

sphere (Fig. 2) from Ag to Agg0 (corresponding to the

displacement of the tie points from DðjÞ to DðjÞg ) is given

by AgAgg0
���!

= GG0
��!

= 2�½ð�g � K̂KoÞ= sin 2�B�xg. This is

replaced by the corresponding displacement on the So

sphere AoAgo0
���!

¼ �2�ð�g=�oÞ½ð�g � K̂KoÞ= sin 2�B�xo, so that

�2�ð�g=�oÞð�g � K̂KoÞ is added to the right-hand side of

equation (16b) as its second term. Thus, ug is given in the same

measure as u and uo, although it is associated with waves

excited by the G wave. While u and uo correspond to the

deviation angle when the O wave strikes the (hkl) lattice

plane, �ug corresponds to the actual deviation angle with

which the G wave strikes the (h k l) plane.

From the waves in equations (14a)–(14d), the intensity of

the diffracted image from the bicrystal is calculated as follows

(for brevity, only the intensity of the diffracted-wave image is

shown):

IgðrÞ ¼
P
i;j

E
i;j
og0 rð Þ þ E

i;j
gg0 rð Þ

h i












2

¼ Iog0 rð Þ þ Igg0 rð Þ þ Ag rð Þ cos �g rð Þ þ Bg rð Þ sin �g rð Þ

ð20Þ

with

�g rð Þ ¼ 2�½�g � ðr� roÞ� þ K	got2 � untgap=�g

� 2�ð�g � K̂KgÞðTb0=�gÞ; ð21Þ

Iog0 ðrÞ ¼
1

4

�o

�g

exp �
1

2

o

1

�o

þ
1

�g

� �
t1 þ t2ð Þ

� �
U2

r

u2
or þ U2

r

�

�
1þ

u2
r

u2
r þ U2

r

� �
cosh 2K	21;it1

	 

þ

2ur

ðu2
r þ U2

r Þ
1=2

� sinh 2K	21;it1

	 

þ

U2
r

u2
r þ U2

r

cosh 2K	21;rt1

	 
�
� cosh 2K�o;it2

	 

� cos 2K�o;rt2

	 
� �
ð22aÞ

Igg0 ðrÞ ¼
1

4

�o

�g

exp �
1

2

o

1

�o

þ
1

�g

� �
t1 þ t2ð Þ

� �
U2

r

u2
r þ U2

r

�

��
1þ

u2
gr

u2
gr þ U2

r

�
cosh 2K�g;it2

	 

�

2ugr

ðu2
gr þ U2

r Þ
1=2

� sinh 2K�g;it2

	 

þ

U2
r

u2
gr þ U2

r

cos 2K�g;rt2

	 
�
� cosh 2K	21;it1

	 

� cos 2K	21;rt1

	 
� �
ð22bÞ

AgðrÞ ¼
1

2

�o

�g

exp �
1

2

o

1

�o

þ
1

�g

� �
t1 þ t2ð Þ

� �
Ur

ðu2
r þ U2

r Þ
1=2

�
Ur

ðu2
or þ U2

r Þ
1=2

�
sinhð2K	21;it1Þ

�
cosðK� ;rt2Þ sinhðK�þ;it2Þ

� cosðK�þ;rt2Þ sinhðK� ;it2Þ
�
� sin 2K	21;rt1

	 

� sin K� ;rt2

	 

cosh K�þ;it2

	 

� sin K�þ;rt2

	 

cosh K� ;it2

	 
� �
�

ugr

ðu2
gr þ U2

r Þ
1=2

�
sinh 2K	21;it1

	 
�
cos K� ;rt2

	 

cosh K�þ;it2

	 

� cos K�þ;rt2

	 

cosh K��;it2

	 
�
� sin 2K	21;rt1

	 

� sin K� ;rt2

	 

sinh K�þ;it2

	 

� sin K�þ;rt2

	 

sinh K� ;it2

	 
� ��
þ

ur

ðu2
r þ U2

r Þ
1=2

cosh 2K	21;it1

	 

� cos 2K	21;rt1

	 
� �
� cos K� ;rt2

	 

sinh K�þ;rt2

	 

� cos K�þ;rt2

	 

sinh K��;it2

	 
� �
�

ur

ðu2
r þ U2

r Þ
1=2

ugr

ðu2
gr þ U2

r Þ
1=2

cosh 2K	21;it1

	 

� cos 2K	21;rt1

	 
� �
� cos K��;rt2

	 

cosh K�þ;it2

	 

� cos K�þ;rt2

	 

cosh K��;it2

	 
� ��
;

ð23aÞ
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research papers



BgðrÞ ¼
1

2

�o

�g

exp �
1

2

o

1

�o

þ
1

�g

� �
t1 þ t2ð Þ

� �
Ur

ðu2
r þ U2

r Þ
1=2

�
Ur

ðu2
or þ U2

r Þ
1=2

�
� sinh 2K	21;it1

	 
�
sin K� ;rt2

	 

cosh K�þ;rt2

	 

� sin K�þ;rt2

	 

cosh K� ;it2

	 
�
� sin 2K	21;rt1

	 

�
�

cos K� ;rt2

	 

sinh K�þ;it2

	 

� cos K�þ;rt2

	 

sinh K� ;rt2

	 
�
þ

ugr

ðu2
gr þ U2

r Þ
1=2

�
sinh 2K	21;it1

	 
�
sin K� ;rt2

	 

sinh K�þ;it2

	 

� sin K�þ;rt2

	 

sinh K��;rt2

	 
�
þ sin 2K	21;rt1

	 

� cos K� ;rt2

	 

cosh K�þ;it2

	 

� cos K�þ;rt2

	 

cosh K� ;it2

	 
�� �
�

ur

ðu2
r þ U2

r Þ
1=2
½cosh 2K	21;it1

	 

� cos 2K	21;rt1

	 

�

� ½sin K� ;rt2

	 

cosh 2K�þ;it2

	 

� sin K�þ;rt2

	 

cosh K��;it2

	 

�

þ
ur

ðu2
r þ U2

r Þ
1=2

ugr

ðu2
gr þ U2

r Þ
1=2
½cosh 2K	21;it1

	 

� cos 2K	21;rt1

	 

�

� sin K��;rt2

	 

sinh K�þ;it2

	 

� sin K�þ;rt2

	 

sinh K��;it2

	 
� ��
:

ð23bÞ

In this calculation, variables and constants u, U etc. in the

amplitude parts are approximated by their real parts, and

those in the phase parts are exactly calculated as complex

quantities. The coherence coefficient is not considered. Indices

r and i denote real and imaginary parts, respectively. K	21;r,

K	21;i and Ur, Ui are given by

K	21;r ¼
1
2 ðu

2
r þ U2

r Þ
1=2=�g; ð24aÞ

K	21;i ¼ i1
2

urui þ UrUið Þ

ðu2
r þ U2

r Þ
1=2

1

�g

; ð24bÞ

Ur ¼ KC �g;r



 

ð�g=�oÞ
1=2; ð25aÞ

Ui ¼ �KC �g;i



 

ð�g=�oÞ
1=2: ð25bÞ

K�þ;r, K�þ;i and K��;r, K��;i are the real and imaginary parts

of the following quantities:

K�þ ¼ K�g þ K�o; ð26aÞ

K�� ¼ K�g � K�o; ð26bÞ

K�o ¼
1
2ðu

2
o;r þ U2

r Þ
1=2=�g þ i1

2

uo;ruo;i þ UrUi

	 

ðu2

o;r þ U2
r Þ

1=2

1

�g

; ð27aÞ

K�g ¼
1
2ðu

2
g;r þ U2

r Þ
1=2=�g þ i1

2

ug;rug;i þ UrUi

	 

ðu2

g;r þ U2
r Þ

1=2

1

�g

: ð27bÞ

ur, ui, uo;r, uo;i and ug;r, ug;i are given by

ur ¼ K�� sin 2�B þ
1
2K�o;r 1� �g=�o

	 

; ð28aÞ

ui ¼
1
2K�o;i 1� �g=�o

	 

; ð28bÞ

uo;r ¼ ur � 2�ð�g � K̂KgÞ; ð29aÞ

uo;i ¼
1
2K�o;i 1� �g=�o

	 

ð29bÞ

ug;r ¼ ur � 2�ð�g=�oÞð�g � K̂KoÞ; ð30aÞ

ug;i ¼
1
2K�o;i 1� �g=�o

	 

: ð30bÞ

K	go is given by

K	go ¼ �� �g � K̂Ko

	 

=�o þ �g � K̂Kg

	 

=�g

� �
: ð31Þ

The symbol tgap that appears in the phase term in equation (21)

denotes the thickness of the interspacing gap between surfaces

a0 and b, namely tgap ¼ Ta0 � t2 � Tb0 ; 
o is the linear

absorption coefficient for mean absorption.

3. Two-dimensionality of crystal diffraction moiré
fringes

The contents of the phase of the interference �gðrÞ in the

intensity field [equation (20)] can be further arranged. As has

been shown in Yoshimura (1996a), part of the first term and

the fourth term in equation (21) for �gðrÞ cancel each other.

Noting that ðr� rb0 Þ k K̂Kg, it turns out that

2� �g � r� rb0ð Þ
� �

� 2� �g � K̂Kg

	 

Tb0=�g

	 

¼ 2� �g � r� rb0ð Þ

� �
� 2� �g � K̂Kg

	 

� r� rb0ð Þ � n
� �

= K̂Kg � n
	 


¼ 0:

Furthermore, another part of the first term and the second

term in equation (21) partially cancel each other (Yoshimura,

1997a), as shown in the following. It can be seen immediately

that the second term can be rewritten as

K	got2 ¼ ���g
K̂Ko

�o

þ
K̂Kg

�g

 !
� rb0 � rbð Þ � n
� �

¼ �2� �g � Ið Þ:

ð32Þ

Here,

I ¼
1

2

K̂Ko

�o

þ
K̂Kg

�g

 !
t2 ¼

1
2 tan �B � 	ð Þ � tan �B þ 	ð Þ
� �

; 0; 1
� �

� rb0 � rbð Þ � n
� �

ð33Þ

is the vector connecting the apex (on surface b) and the

midpoint on the base (on surface b0) of the Borrmann fan

which is supposed for dynamical diffraction in crystal B (see

Fig. 3); 	 is the angle between the diffracting plane and the

surface normal n. Thus, the second term can be decomposed as

K	got2 ¼ �2� �g � Ið Þ ¼ �2� �gk � Ik
	 


þ �g? � I?ð Þ
� �

:

Here, the symbols k and ? denote, respectively, the compo-

nents parallel and perpendicular to surfaces a0 and b. On the

other hand, the remaining part of the first term can be

decomposed to

2� �g � rb0 � roð Þ
� �

¼ 2�
�

�gk � rb0 � roð Þk

� �
þ �g? � rb0 � roð Þ?

� ��
:

It was commented with equation (2) that the origin ro can be

taken on surface b. Accordingly, the second terms on the right-

hand side of these two equations cancel each other, namely

2�½�g? � ðrb0 � roÞ?� � 2�ð�g? � I?Þ ¼ 0, and the phase �gðrÞ

is reduced to
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�g rð Þ ¼ �g rb0ð Þ ¼ 2��gk � rb0 � roð Þk�Ik
� �

� untgap=�g

� �
:

ð34Þ

When the difference in the reciprocal-lattice vectors �g

[defined with equation (2)] is written as

�g ¼ ð1=dÞ½�ð�d=dÞ;��;�!� ð35Þ

in the coordinate system x0yz0, where the yz0 plane is on the

diffracting lattice plane (see Fig. 3), �gk is given in the coor-

dinate system with the xy plane taken on crystal surface a0 or

b, by

�gk ¼ ð1=dÞ � �d=dð Þ cos	��! sin 	;��; 0½ �: ð36Þ

Here, d is the lattice spacing of the diffracting plane; �d is the

difference in d; �! is the inclination of the diffracting plane

about the y axis [parallel to ðK̂Ko � K̂KgÞ]; �� is the rotation

about the axis perpendicular to g and ðK̂Ko � K̂KgÞ.

Thus, the phase difference related to �gk, namely the

intrinsic moiré phase, is written as

’M rb0ð Þ ¼ 2� �gk � rb0 � roð Þk�Ik
� �� �

ð37aÞ

¼
2�

d

 
�

�d

d

� �
cos	��! sin	

� �

� xþ 1
2t2 tan �B þ 	ð Þ � tan �B � 	ð Þ
� �� �

þ��y

!

ð37bÞ

¼
2�

d
�

�d

d

� �
xþ��y

� �
ðwhen 	 ¼ 0Þ: ð37cÞ

From equation (37c), the well known expressions for the

spacing � and direction ’M of moiré fringes are obtained:

� ¼ d= �d=dð Þ
2
þ ��ð Þ

2
� �1=2

; ð38aÞ

tan ’M ¼ �d=dð Þ=��: ð38bÞ

The calculation has so far been conducted in quite a general

way. It may be stated here that the two-dimensional character

of crystal diffraction moiré patterns,

which arise from a three-dimensional

vector �g, has been proved. Parallel

moiré �ð1=dÞð�d=dÞx ¼ N (N is an

integer) and rotation moiré ð��=dÞy

¼ N can occur, but the third type of

moiré �gzz ¼ N does not occur.

However, the third component of �g,

�!=d, takes part in forming a parallel

moiré pattern when 	 6¼ 0.

As seen from the above discussion,

½ðrb0 � roÞk � Ik� in equation (37a) is a

vector on surface b. Therefore, the

moiré phase ’Mðrb0 Þ in equations (37a)–

(37c) is practically determined on

surface b. The observed moiré fringes

are related to such a moiré phase. An

experimental fact evidencing this point

is that regarding moiré dislocations. As

illustrated in Fig. 4, the moiré phase ’Mðrb0 Þ increases by 2� to

add one moiré fringe, every site where the positions of two sets

of lattice planes having a difference of �d exactly coincide

with each other. In this property, moiré fringes may be

referred to as a counter of excess or deficient lattice planes.

From this viewpoint, it can be well understood that, when a

dislocation outcrops on one of the facing surfaces a0 or b, the

moiré pattern sensitively responds to it to form a moiré

dislocation. As Lang (1968) demonstrated, only such disloca-

tions as outcropping on the inner facing surfaces give rise to

moiré dislocations, and other dislocations do not affect the

moiré pattern. Diffraction moiré fringes, though being inter-

ference fringes of light waves, produce a moiré pattern of

superposed lattice planes by the same mechanism as geome-

trical moiré patterns. It is difficult to consider that a discon-

tinuity in the lattice-plane arrangement such as that in Fig. 4

can occur on boundaries or surfaces other than those where

the lattice cut actually occurs, as in a bicrystal and a cracked

crystal. We now arrive at an inference that the absence of the

lattice cut as above would be the reason why moiré fringes

have not been found in diffraction images of growth-sector

boundaries, despite the occurrence of �g. Discussion and

analysis on moiré fringes agreeing with the above discussion of
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Figure 3
Coordinate systems in the discussion of the moiré phase, and graphical representation of
components of �g. The two triangles in the left-hand side figure represent Borrmann fans for the
incidence of the waves, Ko and Kg. In this diagram K̂Ko ¼ ½� sinð�B þ 	Þ; 0; cosð�B þ 	Þ� and
K̂Kg ¼ ½sinð�B � 	Þ; 0; cosð�B � 	Þ�.

Figure 4
Schematic illustration to explain the generation of moiré fringes based on
equation (37c) with �� = 0.



equation (37a) have also been given by Ohler et al. (1999).

Although the discussion in this section has in substance been

written in Yoshimura (1997a), it was rewritten here to revive

the previous remark on the two-dimensionality of the moiré

pattern and to complete the moiré theory here.

4. Plane-wave image and effect of Pendellösung phase

In this section, we present a theoretical simulation of several

moiré-fringed diffraction images to demonstrate the property

of moiré fringes. According to the results of the simulation

work, it is when the angular width of the incident beam is

approximately less than 0.0200 that experimental moiré images

given by the integrated intensity agree well with theoretical

plane-wave moiré images. While all the experimental moiré

images are obtained as an integrated intensity image in some

measure, no moiré experiment has probably been made so far

using such a highly collimated beam. In this sense, the prop-

erty of a plane-wave moiré image appears in the pure form

only under extreme experimental conditions. However,

knowledge on the plane-wave moiré image would be useful in

the study of diffraction moiré images in general, observed

under wide experimental conditions.

The third and fourth terms in equation (20) for the moiré-

image intensity, which involve the phase �gðrÞ, need to be

unified to a single term for a discussion of the properties of

interference images. Therefore, equation (20) is rewritten as

Ig r; uð Þ ¼ Iog0 r; uð Þ þ Igg0 r; uð Þ �

�
Ag r; uð Þ
� �2

þ Bg r; uð Þ
� �2

�1=2

� cos
�

2��gk � rb0 � roð Þk�Ik
� �

� untgap=�g

� atan Bg r; uð Þ=Ag r; uð Þ
� ��

: ð39Þ

Here, AgðrÞ and BgðrÞ in equations (23a), (23b) are written as

Agðr; uÞ and Bgðr; uÞ with regard to their dependence on the

deviation parameter u; also Iog0 ðrÞ and Igg0 ðrÞ are similarly

rewritten. The position vector r for the observation point may

be taken to be the same as rb0 for the position on the exit

surface b0, based on the projective property of the moiré image

confirmed in equation (34) (in theory). The first term in the

cosine function is written in the reduced form as given in

equation (37a). The third, newly added term is related to the

intensity oscillation due to the Pendellösung action in the

crystal [atanðBg=AgÞ means tan�1ðBg=AgÞ]. Hence, the phase

term is hereafter called the PL phase. The PL phase is a

constant and does not significantly affect the fringe pattern, so

far as the image intensity does not vary with the position in the

image. However, when the crystal has some strain and crystal

absorption for the beam intensity is small, this PL phase varies

sensitively with r and u, to modify the intrinsic moiré pattern

significantly. This oscillation is the same as the intensity

oscillation called equi-inclination oscillation in a single crystal.

Thus, two interferences of different origins, moiré and

Pendellösung interferences, combine to make the one inter-

ference pattern of crystal diffraction moiré. Such an effect of

the PL phase has already been described by Hashimoto et al.

(1961). However, since then, not much attention has been paid

to it in the X-ray field, until a remark by Yoshimura (1997a).

At this stage of the discussion on the plane-wave image, the

gap phase untgap=�g in the second term in the cosine function in

equation (39) does not significantly affect the moiré-fringe

pattern under discussion. However, it can affect the fringe

pattern even in the plane-wave image, when the front crystal A

is strained so that un varies with the position in the crystal. The

phase of the moiré interference is thus composed of the three

terms as in equation (39). The phase term ‘�refr for refractive-

index difference’ in Ohler & Härtwig (1999, p. 414) does not

appear in the calculation of this paper. Furthermore, the

above gap phase untgap=�g does not agree with their gap phase

‘�gap’.

One problem in expression (39) is the double sign� in front

of the third term on the right-hand side, which gives indefi-

niteness by � to the phase of the cosine function. Which of the

two signs ‘�’ should be taken was determined by comparing

the intensity calculated by equation (39) with that by the

original equation (20). From the result of thus checking the

phases of many moiré fringes, it was found that the correct

sign to be adopted switches alternately with a period of some

spatial interval. Another, more important, problem in equa-

tion (39) is a discontinuous change by �� in the phase term

atan½Bgðr; uÞ=Agðr; uÞ�. This discontinuous change occurs in

two ways: one is when Agðr; uÞ ¼ 0 and Bgðr; uÞ 6¼ 0, and

another is when Agðr; uÞ ¼ 0 and Bgðr; uÞ ¼ 0. The first type of

phase jump occurs owing to the limits by the defined domain

½��=2;þ�=2�. Such phase jumps are false jumps which do not

occur in the original equation (20). In the calculations shown

later, such false jumps were corrected manually one by one,

and the correctness of the entire corrected phase was checked

by comparing the intensities calculated by equations (39) and

(20). This phase correction is analogous to the work of the

atan2 function. However, we do not use atan2 here, since the

corrected phase values are not necessarily held within the

defined domain ½��;þ��. The second type of phase jump

when Agðr; uÞ ¼ Bgðr; uÞ ¼ 0 is a real phase jump, which also

occurs in the calculation by equation (20). It is not difficult to

confirm that Agðr; uÞ ¼ Bgðr; uÞ ¼ 0 actually occurs when

sin t1=2�g

	 

ðu2 þ U2Þ

1=2
� �

sin t2=2�g

	 

ðu2

g þ U2Þ
1=2

� �
¼ 0 ð40Þ

holds in equations (23a), (23b) for Agðr; uÞ and Bgðr; uÞ, in the

case of zero absorption (�g;i ¼ 0). Then an abrupt change by

�� of the phase atan½Bgðr; uÞ=Agðr; uÞ� occurs for r of

Agðr; uÞ ¼ Bgðr; uÞ ¼ 0. The reason for this can be understood

from Fig. 5. When Agðr; uÞ and Bgðr; uÞ change sign at the same

time as they pass through the origin, the value of

atan½Bgðr; uÞ=Agðr; uÞ� discontinuously changes by �� with

the value of Bgðr; uÞ=Agðr; uÞ remaining unchanged. Though it

is only in the extreme case of �g;i ¼ 0 that Agðr; uÞ ¼

Bgðr; uÞ ¼ 0 holds exactly, cases where Agðr; uÞ ffi 0 and

Bgðr; uÞ ffi 0 ordinarily occur. Then an analogous abrupt but

continuous phase change occurs owing to the abrupt change of

ðAg;BgÞ  ! ð�Ag;�BgÞ. The position of the fringe changes

abruptly as a result of this abrupt phase change. We call this

abrupt change of half a period an abrupt fringe jump in this
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paper. This property of diffraction moiré fringes was not

known at the start of this study, and was found in the search

for the cause of the local bending of moiré fringes. The phase

atan½Bgðr; uÞ=Agðr; uÞ� is given as

’P;g r; uð Þ ¼ atan Bg r; uð Þ=Ag r; uð Þ
� �

ð41Þ

[the sign is reversed compared to the definition in Yoshimura

(1996a)]. From equations (39) and (37c), the equation for the

fringe line (i.e., the equi-phase line) when 	 ¼ 0 is given by

� 2� �d=dð Þ=d½ �xþ 2� ��=dð Þy� untgap=�g

� atan Bg r; uð Þ=Ag r; uð Þ
� �

¼ 2�N: ð42Þ

In what follows we present examples of moiré images showing

abrupt fringe jumps, computed under several different sets of

conditions. All the images were computed using the original

equation (20), not by equation (39). Visual Basic .NET,

version 2003, was used to write the computation. In all the

computations the Si 220 reflection with Mo K	 radiation

(0.070926 nm) was assumed; �B = 10.64
; the symmetric Laue

geometry (	 ¼ 0, �o ¼ �g) was assumed. To avoid complica-

tions when interpreting the computed images, the fringe

pattern was assumed to be of rotation moiré with (�d/d) = 0,

except for the case in Fig. 13. The relative rotation of the

diffracting plane for the rotation moiré was assumed to be ��
= d /0.045 (rad), to make the fringe spacing � = 0.45 mm (d =

0.19202 nm). The front crystal A of the bicrystal was assumed

to be strain-free except for the case in Fig. 12(a). The rear

crystal B was assumed to be lightly curved around the y axis

concavely in the outward direction, with a curvature of s =

0.04500 per mm. This causes an inclination of the diffracting

lattice plane that is given by �! ¼ s� ðx� xoÞ (xo = 9.0 mm).

The thickness of the interspacing air gap was assumed to be

tgap = 0.024 mm. Deviation parameters in equation (11) and

equations (16a), (16b) are calculated as

u ¼ K�� sin 2�B; ð43Þ

uo ¼ uþ 2�=dð Þ �d=dð Þ sin �B ��! cos �B

� �
; ð44aÞ

ug ¼ u� 2�=dð Þ �d=dð Þ sin �B þ�! cos �B

� �
; ð44bÞ

under the above assumption of symmetric Laue geometry.

First, Fig. 6 shows a computed moiré image when crystal

absorption was imaginarily assumed zero (
o ¼ 0, j�g;ij ¼ 0).

The crystal thicknesses and the deviation angle were assumed

to be t1 ¼ t2 ¼ 0:8 mm and �� ¼ 0:3200. Although opposite to

the main convention, the images in this paper are presented so

that white contrast indicates higher intensity. The aforemen-

tioned abrupt fringe jumps can be observed at x ffi 0.6, 2.7, 5.1

and 8.1 mm. The fringe jumps in this case are exactly the half-

a-period positional change, and fringe lines are discontinuous

between facing image regions. The magnified image in the

inset shows details of the fringe jumps and discontinuity. Fig. 7

shows the curves of Vgðr; uÞ (fringe contrast), Agðr; uÞ; Bgðr; uÞ

and ’P;g ¼ atan½Bgðr; uÞ=Agðr; uÞ� calculated by equations

(20), (23a), (23b) and (41), for the moiré image in Fig. 6. The

curve of ’P;g in the middle figure by equation (41) is corrected

to the curve as in the bottom figure, in the way described

earlier. Fringes in Fig. 6 change their position in accordance

with this corrected phase curve, on the basis of the fringe-line

equation (42). Discontinuous �� phase jumps are clearly

recognized in this phase curve. Fig. 8 shows a moiré image

computed with the real value of absorption, with other

conditions being the same as those for Fig. 6. However, since

the image is much changed from that in Fig. 6, an image
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Figure 6
(a) Computer simulation of X-ray diffraction moiré image (rotation
moiré of the fringe spacing 0.45 mm) with a silicon bicrystal assumed as
the specimen. The 220 reflection with Mo K	 radiation (0.070926 nm) was
assumed; plane-wave G image with the deviation angle �� ¼ 0:3200; zero
absorption (�g;i ¼ 0) was assumed. Thicknesses of the component crystals
of the bicrystal were t1 ¼ t2 ¼ 0:80 mm, and that of the interspacing gap
was tgap ¼ 0:24 mm. The rear component crystal B was assumed to be
lightly curved with a curvature of s ¼ 0:04500 per mm. The scale in the y
direction is the same as that in the x direction. See text for more details.
(b) Doubly magnified image of the image in (a), to show fringe jumps and
discontinuities in detail.

Figure 5
Quarter circle for explaining the phase jump of atanðBg=AgÞ, drawn in the
plane of A–B coordinates.



imaginarily computed with half the real value of absorption is

appended in the inset in Fig. 8(b). (The change in the �g;i value

for absorption by changing the wavelength also causes an

unwanted change in �g;r, making an easy comparison difficult.)

Fig. 9(a) shows the calculated curves of Vgðr; uÞ, Agðr; uÞ,

Bgðr; uÞ and ’P;gðr; uÞ for the inset image, Fig. 8(b). Although

the condition Agðr; uÞ ¼ Bgðr; uÞ = 0 no longer holds, abrupt

changes of the phase ’P;gðr; uÞ approximately occur where

Agðr; uÞ ¼ 0 and Bgðr; uÞ comes close to zero. Fig. 9(b) shows

calculated curves of Vgðr; uÞ, Agðr; uÞ, Bgðr; uÞ and ’P;gðr; uÞ for

the image in the main figure, Fig. 8(a). For this image, the

condition Agðr; uÞ ¼ 0 nowhere holds, and phase jumps do not

occur. Nevertheless, oscillations of Agðr; uÞ, Bgðr; uÞ and

’P;gðr; uÞ occur though not an abrupt change, and the fringes

undulate correspondingly. Figs. 10(a), 10(b) show moiré

images at �� ¼ �0:1200 and �� ¼ �0:5200 for comparison with

the image in Fig. 8(a) at �� ¼ 0:3200; they were computed with

all conditions other than �� taken to be the same as for Fig.

8(a). As can be seen in the three images, when the angular

position (i.e., deviation angle) �� varies from the positive to

negative side, the fringes become nearly flat in the vicinity of

�� ¼ 0; as �� further goes on in the negative region, the

fringes begin to undulate again with a short interval.

Figs. 11(a), 11(b) show moiré images computed for crystal

thicknesses t1 ¼ t2 ¼ 1:5 and t1 ¼ t2 ¼ 2:5 (mm), respectively,

with the deviation angle being the same as for Fig. 8(a), i.e.,

�� ¼ 0:3200; the real value of absorption was used. As seen in

these images, the amplitude of the fringe undulation gradually

decays while the oscillation interval becomes shorter, with the

increasing crystal thicknesses. The undulation is still seen at

t1 ¼ t2 ¼ 1:5 mm, but almost disappears at t1 ¼ t2 ¼ 2:5 mm.

Such decay of the fringe undulation is analogous to the decay
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Figure 8
Moiré images computed under the same conditions as for Fig. 6, except
for the value of crystal absorption. (a) Image when the real value of
absorption was used; (b) image when half the real value was assumed.

Figure 9
Calculated curves of Vg, Agðr; uÞ and Bgðr; uÞ, and of the as-calculated and
the corrected PL phases, analogous to Fig. 7. The graphs in (a) are for the
moiré image in Fig. 8(b) (inset), and those in (b) are for the moiré image
in Fig. 8(a) (main figure).

Figure 7
Top: curves of Vg [fringe contrast, calculated by equation (20)], and of
Agðr; uÞ and Bgðr; uÞ calculated by equations (23a), (23b). Middle: curves
of the PL phase as calculated by equation (41). Bottom: curves of the
corrected PL phase. All the graphs are for the moiré image in Fig. 6. See
text for details.



of subsidiary maxima and minima with increasing absorption,

in a rocking curve showing an equi-inclination oscillation.

(The 
ot values are 2.2 for t ¼ 0:15 mm, and 3.7 for

t ¼ 0:25 mm.)

Figs. 12(a), 12(b) show examples of when either of crystals

A and B is thin. The image in Fig. 12(a) was computed

assuming that the thin front crystal A (t1 ¼ 0:2 mm) is curved

concavely in the outward direction, and the thick rear crystal

B (t2 ¼ 2:0 mm) is strain-free. In this case only, where crystal

A is strained, the following equations were employed for the

calculation of u, uo and ug:

u ¼ K�� sin 2�B þ
1
2 K�o 1� �g=�o

	 

� 2� �g1 � K̂Kg

	 

; ð45Þ

uo ¼ u� 2� �g2 ��g1ð Þ � K̂Kg

� �
; ð46aÞ

ug ¼ u� 2� �g=�o

	 

�g2 ��g1ð Þ � K̂Ko

� �
: ð46bÞ

Here, �g1 is a local change in the reciprocal-lattice vector

from g for the perfect region in crystal A; �g2 is a change in

the reciprocal-lattice vector in crystal B, relative to the same

reciprocal-lattice vector g in crystal A; �g2 is the same as the

previously used �g. The inclination of the diffracting plane in

crystal A was given as �!1 ¼ s1 � x� xoð Þ with s1 ¼ �0:04500

per mm (xo = 9.0 mm), while that in crystal B was �!2 ¼ 0;

�� and (�d=d) were the same as in Fig. 8(a); 	 ¼ 0. Then, u,

uo and ug in the above equations become

u ¼ K�� sin 2�B � 2�=dð Þ�!1 cos �B; ð47Þ

uo ¼ ug ¼ K�� sin 2�B; ð48Þ

the deviation angle was �� ¼ 0:3200. In the computed image an

abrupt fringe jump (or a local bending of fringes) as observed

in Fig. 8 etc. can be seen around x ffi 5:0. The fringes are

inclined as if the intrinsic moiré pattern has a parallel

component (�d/d), but that is in reality due to the contribu-

tion from the gap phase untgap=�g, which varies with x, being

caused by the variation of u in equation (47). The abrupt

fringe jump is caused by the curvature in crystal A. Since

uoðxÞ ¼ ugðxÞ ¼ constant in this case, crystal B takes no part in

the fringe jump. The assumption that crystal A is thin is no

essential condition. Also for thicker crystal A, abrupt fringe

jumps would occur analogously to Fig. 8 etc., though fringes

are inclined owing to the phase untgap=�g. A description that

appears to refer to a similar effect of the gap phase can be

found in Tanemura & Lang (1973). The image in Fig. 12(b), for

the case that the rear crystal B is thin (t2 ¼ 0:2 mm), was
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Figure 10
Computed moiré images under the same conditions as for Fig. 8(a), but
with (a) �� ¼ �0:1200 and (b) �� ¼ �0:5200.

Figure 11
Computed moiré images under the same conditions as for Fig. 8(a), but
with the crystal thicknesses of (a) t1 ¼ t2 ¼ 1:5 mm and (b)
t1 ¼ t2 ¼ 2:5 mm.

Figure 12
Computed moiré images under the same conditions as for Fig. 8(a), but
with the crystal thicknesses of (a) t1 = 0.2, t2 = 2.0 (mm) and (b) t1 = 2.0, t2

= 0.2 (mm). [tgap = 0.24 mm and �� ¼ 0:3200 in both (a) and (b).] For the
image (a), the front crystal A is assumed to be strained, unlike the
assumption for other computed images. See text for more details.



computed under the same conditions as for Fig. 8(a) except for

the crystal thicknesses, and with equations (43) and (44a),

(44b) used again for the calculation of u, uo and ug; crystal A

was assumed to be strain-free, while crystal B was assumed to

have curvature s = 0.04500 per mm; �� ¼ 0:3200. When the

crystal becomes thin, the crystal absorption is smaller and the

fringe jumps should be more clearly abrupt. However, on the

other hand, related variables such as ’P;gðr; uÞ vary more

slowly, so that fringe jumps become more gently sloped and

widely spaced.

In the above, we have surveyed how abrupt fringe jumps

appear depending on the values of ��, t1, t2 and the magnitude

of absorption, with �� and s being fixed and �d=d ¼ 0. As the

curvature |s| becomes larger, the number of abrupt fringe

jumps increases, but the height of the jumps does not signifi-

cantly change since it is determined by the magnitude of

absorption. When the sense of curvature becomes opposite

(s< 0), the bending of fringes becomes of a shape symmetric

to that in Fig. 8 etc., as a broad outline. Namely, when s< 0, the

fringe position (y) slowly rises from left to right and is abruptly

lowered. (Such fringe bending in plane-wave images differs

from that in integrated intensity images.) When the diffracting

lattice plane is uniformly inclined (about the y axis) without
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Figure 13
Computed moiré images for a parallel moiré with �d=d ¼ d=0:045 and
�� ¼ 0. The crystal and gap thicknesses were the same as for Fig. 8(a).
�� ¼ �0:1200. (a) Moiré image when both crystals A and B have no local
strain. (b) Moiré image when crystal B has a curvature of s ¼ 0:04500 per
mm around the y axis, similar to the case of Fig. 8(a) etc. See text for more
details.

Figure 14
Moiré images of transmitted wave (O wave), computed under the same
conditions as for Figs. 6 and 8(a) regarding the values of �d=d, ��, the
crystal and gap thicknesses and the crystal curvature; �� ¼ 0:3200. (a)
Moiré image when zero absorption was assumed. (b) Moiré image when
the real value of absorption was used.

Figure 15
(a) Calculated curves of Vo (fringe contrast), Aoðr; uÞ, Boðr; uÞ and of the
as-calculated and the corrected PL phases, associated with the moiré
image in Fig. 14(b). (b) Intensity profiles by the scan along the y axis in
the computed moiré images, for the comparison between the O and G
images. The top figure compares the profiles in Fig. 6 and Fig. 14(a) for
the case that zero absorption was assumed; the bottom figure compares
profiles in Fig. 8(a) and Fig. 14(b) when the real value of absorption was
used.



curvature (s ¼ 0), namely, �!ðxÞ ¼ constant, the uniform

inclination �! does not affect the fringe pattern since Agðr; uÞ

and Bgðr; uÞ do not vary with the position in the crystal.

Furthermore, so far as the diffracting plane is exactly parallel

to the surface normal n (i.e. 	 ¼ 0), the inclination �! does

not affect the intrinsic moiré pattern, as can be seen from

equation (37b). Because of a uniform change in ’P;g ¼

atan½Bgðr; uÞ=Agðr; uÞ� by the uniform inclination �!, the

entire fringe pattern is uniformly displaced by a corresponding

distance in the x and/or y directions, in accordance with

equation (42).

Figs. 13(a), 13(b) show moiré images computed for a

parallel moiré of �� ¼ 0 and �d=d ¼ d=0:045, with the

assumption of no curvature (s ¼ 0) and the curvature of s =

0.04500 per mm in crystal B, respectively. The deviation para-

meters u, uo and ug were calculated by equations (43) and

(44a), (44b) in the same way as for Fig. 8(a). Though not so

large as to be easily noticed without close comparison, the

fringe spacing in Fig. 13(b) is modified relative to that in Fig.

13(a). The image intensity in Fig. 13(b) is also considerably

modified compared with that in Fig. 13(a). (The intensity

modulation was large and rapid at �� ¼ 0:3200, and therefore

the images at �� ¼ �0:1200 of a weaker modulation are

presented.) Thus, the combined effect of the crystal curvature

and the PL phase can also be seen in such differences between

the two images of parallel moiré. Finally, an example of moiré

images of the O wave is shown in Figs. 14(a), 14(b), although

the associated intensity equation was omitted. The computa-

tion was conducted using the same values of �d=d, ��, s, t1; t2,

tgap and ��, as for Fig. 8(a). Fig. 14(a) shows the image when

zero absorption was assumed and is to be compared with Fig.

6. Fig. 14(b) was computed with the real value of absorption,

and is compared with Fig. 8(a). Calculated curves of fringe

contrast Voðr; uÞ and of phase-related variables Aoðr; uÞ,

Boðr; uÞ and ’P;oðr; uÞ associated with the image in Fig. 14(b)

are shown in Fig. 15(a). [Aoðr; uÞ, Boðr; uÞ and ’P;oðr; uÞ

correspond to Agðr; uÞ, Bgðr; uÞ and ’P;gðr; uÞ for the G image,

respectively.] The fringe pattern in Fig. 14(a) is almost the

same as that in Fig. 6, but the fringe position is displaced by

half a period, as shown in the top figure in Fig. 15(b). As the

intensity profiles of these two fringe patterns show, the

complementarity of diffracted intensities between the O and

G images holds in this case. When absorption has the real

value, vertical bands of abrupt fringe jumps in the O and G

images are displaced from each other by nearly half the

interval, as can be seen in Fig. 8(a) and Fig. 14(b). On the other

hand, their fringe positions come nearer to each other, as

shown in the bottom figure in Fig. 15(b). A comparison of

experimental O and G images of moiré fringes in such a

relation has been presented in Yoshimura (1997a).

5. Summary

The theory of X-ray diffraction moiré fringes with a bicrystal

specimen has been described by plane-wave dynamical

diffraction theory. In the development of the theory, attention

was paid to describing the double diffraction of moiré inter-

ference exactly and in detail. On the basis of the developed

theory, the effect of crystal strain and Pendellösung intensity

oscillation on the interference pattern of moiré fringes was

studied in detail with the theoretical calculations of the moiré

image and of the phase-related variables. Through this work, it

was revealed that crystal diffraction moiré fringes have the

basic property of an abrupt fringe jump of half a period. It was

found that, when the front crystal of a bicrystal is strained,

significant modification to the moiré fringe pattern can occur

owing to the local variation of the gap phase caused by the

strain. Furthermore, a pending question for a long time

regarding the dimensionality of crystal diffraction moiré

fringes has been settled. A theoretical study of the integrated

intensity image of moiré fringes will be given elsewhere,

following this theory of the plane-wave image.
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