MS9-O2 At play in the briar patch of epigenetics Jim Kiefer¹, Patrick Trojer², Marie Classon¹, Maia Vinogradova¹, Victor Gehling², Shilpi Arora², Amy Gustafson¹, Brian Albrecht², Charles Tindell¹, Kaylyn Williamson², Catherine Wilson¹, Jennifer Busby², Yichin Liu¹, Pranoti Gangurde², David Arnott¹, Shane Buker², Tommy Cheung¹, Fei Lan², Erica Jackson¹, Megan Flynn¹, Andrea Cochran¹, Tobias Maille¹, Gulfem Guler¹, Christopher Bailey², Richard Cummings², Robert Pitti¹, Matthew Wongchenko¹, Yibing Yang¹, Ted Lau¹, Mike Costa¹, Jean-Christophe Harmange², Jeffrey Settleman¹ - 1. Genentech Inc., South San Francisco, California, USA - 2. Constellation Pharmaceuticals, Cambridge, Massachusetts, USA ## email: kiefer.james@gene.com The understanding of non-genetic mechanisms in cancer biology and treatment resistance has steadily evolved over the last two decades. Several epigenetic modulator and monitoring proteins have been implicated in maintaining tumor cells in pluripotent – and often drug resistant – states. We have discovered a series of inhibitors that modulate epigenetic signaling and impact drug resistance. We used a multi-pronged approach to identify and optimize these molecules, including the determination of novel crystal structures of the target protein. In addition to aiding chemical design, these structures inform models for substrate recognition not previously possible in other systems. **Keywords:** epigenetics, crystallography, inhibitor, cancer, structure based drug design ## MS9-O3 Identification of novel allosteric inhibitors through Fragment-Based Drug Discovery and X-ray crystallography Puja Pathuri¹, Susanne M. Saalau-Bethell¹, Andrew J. Woodhead¹, Valerio Berdini¹, Maria G. Carr¹, Gianni Chessari¹, Anne Cleasby¹, Miles Congreve¹, Joseph E. Coyle¹, Brent Graham¹, Steven D. Hiscock¹, Victoria Lock¹, Christopher W. Murray¹, M. Alistair O'Brien¹, Sharna J. Rich¹, Caroline J. Richardson¹, Tracey Sambrook¹, Mladen Vinkovic¹, Pamela A. Williams¹, Jeff R. Yon¹, Harren Jhoti¹ 1. Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge, United Kingdom ## email: Puja.Pathuri@astx.com X-ray crystallography provides a powerful and sensitive primary screening technique for fragment-based drug discovery with the potential to detect binding events not only at precedented active sites, but also in previously unexploited pockets. Fragment-based drug discovery at Astex uses a combination of X-ray crystallography and other biophysical techniques including NMR, ITC and thermal shift (T_m) to identify initial fragment hits at known binding sites and novel allosteric sites. Using our proprietary fragment screening platform, PyramidTM we have successfully discovered molecules that bind at novel allosteric sites in different enzyme families. During this presentation we will show how we used fragment based drug discovery in the identification of significant allosteric sites on the full length NS3 protein from the Hepatitis C Virus (HCV) and human soluble Adenylate Cyclase. **Keywords:** Fragment-based drug discovery, crystallography, allosteric sites