MS41-O5 The crystal structure and decomposition properties of the first Al-based amidoborane from *in situ* x-ray powder diffraction Iurii Dovgaliuk¹, Damir A. Safin¹, Lars H. Jepsen², Zbigniew Łodziana³, Vadim Dyadkin⁴, Torben R. Jensen², Michel Devillers¹, Yaroslav Filinchuk¹ - 1. Institute of Condensed Matter and Nanosciences Université catholique de Louvain Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium E-mail: yaroslav.filinchuk@uclouvain.be - 2. Center for Materials Crystallography, Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University Langelandsgade 140, DK-8000 Aarhus C, Denmark - 3. Department of Structural Research INP Polish Academy of Sciences ul. Radzikowskiego 152, 31-342 Kraków, Poland - 4. Swiss-Norwegian Beam Lines European Synchrotron Radiation Facility rue Horowitz 6, 38043 Grenoble, France ## email: iurii.dovgaliuk@uclouvain.be Complex hydrides, such as NaAlH₄, are reversible hydrogen stores operating only at elevated temperatures, even in the presence of catalysts. Chemical hydrides, such as NH₃BH₃ (AB), release a number of by-products upon thermolysis and are often non-reversible. Here we show that ball milling of NaAlH₄–4AB mixture or heating it to ~70 °C produces the first Al-based amidoborane Na[Al(NH₂BH₃)₄] and 4.5 wt% of pure hydrogen. The structure was solved from synchrotron X-ray powder diffraction and confirmed through DFT and spectroscopic studies, contains previously unknown tetrahedral [Al(NH₂BH₃)₄] anions, where NH₂BH₃ ligands are coordinated to Al via N atoms. Upon heating, this complex yields in two steps 9 wt% of hydrogen with traces of ammonia, NaBH₄, and amorphous products. The structure of Na[Al(NH₂BH₃)₄] (space group *P*-1, α = 9.4352(2), b = 7.7198(1), c = 7.6252(1) Å; α = 97.211(1), β = 109.223(2), γ = 89.728(2)°, R_F = 5.7%) is the second amidoborane with a triclinic structure, after the bimetallic Na[Li(NH₂BH₃)₂].^[1] The central Al atom adopts tetrahedral coordination exclusively via nitrogen atoms from four NH₂BH₃, making it a new member of Al complex hydrides with tetrahedral coordination, after alanates AlH_4^- , complex amides $[Al(NH_2)_4]^-$ and borohydrides $[Al(BH_4)_4]^-$. The structure consists of $[Al(NH_2BH_3)_4]^-$ anions and Na^+ cations, the latter are being octahedrally coordinated by six BH₃ groups, similar to Na⁺ in Na₂[Mg(NH₂BH₃)₄].^[2] The Na(NH₂BH₃)₆ octahedra are linked via edges into infinite zig-zag chains. The dehydrogenation of the complex is partially reversible: ~27% of the released hydrogen can be reabsorbed at 250 °C and 150 bar of hydrogen. Hydrogen reabsorption does not regenerate NaAlH₄ or Na[Al(NH₂BH₃)₄], but occurs between amorphous products and intermediates of the dehydrogenation. Further study of the Al-B-N-H products may open a way to a new family of reversible hydrogen storage materials. The combination of complex and chemical hydrides is made possible thanks to the lower stability of Al-H bonds compared to B-H and due to the strong Lewis acidity of the complex-forming Al³⁺. This system opens a way to a series of aluminium tetraamidoboranes with improved hydrogen storage properties such as hydrogen storage density, hydrogen purity and the reversibility. 1. K. J. Fijalkowski, R. V. Genova, Y. Filinchuk et al. *Dalton Trans.* **2011**, *40*, 4407-4413. 2. H. Wu, W. Zhou, F. E. Pinkerton et al. *Chem. Commun.* **2011**, *47*, 4102-4204. **Keywords:** X-ray powder diffraction, complex hydrides, hydrogen storage