

Figure 1. Photographs of transparent empty silica monolith (left) and SNP-silica nanocomposite (right) and schematic representation of encapsulated nanoparticles.

Keywords: total scattering, NMR, nanocrystalline material, molecular compounds

MS23-P15 Tailoring phase composition and microstructural features of Ba₄Nb₂O₉ polymorphs *via* thermal decomposition route

Martina Vrankić¹, Jasminka Popović¹, Marijana Jurić¹

1. Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia

email: mvrankic@irb.hr

Synthesis of nanoparticles with a controlled size has been found to be crucial for tailoring desired material properties since thermal, electric, optical, catalytic, and magnetic properties are strongly composition-, structure-, but also, size- and shape-dependent.^{1,2} It is well known that Ba₄Nb₂O₉ exhibits mixed electronic, oxide ion, and proton conductivity, which makes it especially attractive in the field of fuel cells, steam electrolysers, and humidity sensors.³ Especially, the γ -Ba₄Nb₂O₉ phase exhibits several orders higher conductivity than α-Ba₃Nb₂O₉ due to a faster protonic and oxide ionic transport. ³Up to now, the γ polymorph was metastable at room temperature (RT) and so could be isolated only by quenching the sample from high temperatures, because slow cooling led to a transformation to α phase.³ In the present study the mixed Ba^{II}-Nb^V containing oxides were prepared using {Ba₂(H₂O)₅[NbO(C₂O₄)₃]HC₂O₄}·H₂O as a single-molecular precursor. A systematic study of preparation conditions was carried out, namely, tuning the final structural and microstructural parameters by (i) the holding time (2, 1 and 0.5 h) at 1175 °C and (ii) the cooling rate (3, 7 and 12 °C min⁻¹) from 1175 °C back to RT. Nanocrystalline products obtained by thermal decomposition of the precursor were investigated by X-ray powder diffraction at RT. Size and strain analysis were obtained in the course of the Rietveld refinement. Since all samples prepared by a cooling rate of 12 °C min⁻¹ contained only the γ -Ba₄Nb₂O₉ polymorph, it was evident that faster cooling prevented the $\gamma \to \alpha$ phase transition, which resulted in the retention of the high-temperature γ -Ba₄Nb₂O₉ phase at RT. Shortening of the time period for which γ -Ba₄Nb₂O₉ containing samples were held at 1175 °C had no impact on their phase composition. All samples were found to be strain free. Crystallite sizes were ~ 20 nm for γ -Ba₄Nb₂O₀ prepared with a holding time of 2 h while it decreased to ~5 nm with shortening of the holding time to 0.5 h.

References:

- (1) Fernández-García, M.; Martínez-Arias, A.; Hanson, J. C.; Rodriguez, J. A. *Chem. Rev.* **2004**, 104, 4063–4104.
- (2) Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. *Chem. Rev.* **2005**, 105, 1025–1102.
- (3) Ling, C. D.; Avdeev, M.; Kutteh, R.; Kharton, V. V.; Yaremchenko, A. A.; Fialkova, S.; Sharma, N.; Macquart, R. B.; Hoelzel, M.; Gutmann, M. *Chem. Mater.* **2009**, 21, 3853–3864.

Keywords: phase composition, size and strain analysis, Rietveld refinement