MS25-P8 The substitution effect of chromium on the physical characterisation, magnetic and dielectric properties La_{0.65} Eu_{0.05}Sr_{0.3}Mn_{1-x} Cr_xO₃ nanocrystalline properties study of SrFe₁₂O₁₉/CoFe₂O₄ Marwène Quinezzine¹ Mar García Hernández² Federico composite

Marwène Oumezzine¹, Mar García Hernández², Federico Mompeán², Mohamed Oumezzine¹

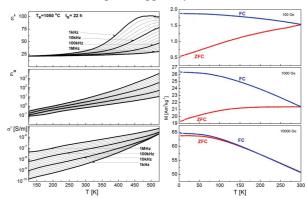
- 1. Laboratoire de Physico-chimie des Matériaux, Département de Physique, Faculté des Sciences de Monastir, Université de Monastir, 5019, Tunisia.
- 2. Instituto de Ciencia de Materiales, CSIC, Sor Juana Inés de la Cruz s/n, 28049 Madrid (Spain).

email: oumezzine@hotmail.co.uk

Nanocrystalline powders of $La_{0.67}Ba_{0.33}Mn_{1-x}Cr_xO_3$ perovskites have been synthesized by the sol-gel method. X-ray diffraction along with the Rietveld-refinement shows the formation of pure crystalline phase with rhombohedral symmetry (space group R-3C, no. 167). Magnetic measurements indicate that the ferromagnetic double exchange interaction is weakened with increasing Cr concentration, resulting in a shift in T_C from 342K to 285K as x varied between 0 and 0.15. Furthermore, all samples undergo a paramagnetic (PM) - ferromagnetic (FM) phase transition at $T = T_C$. Based on the idea that doped manganites consist of ferromagnetic-metallic and paramagnetic-semiconducting (M-SC) regions coexisting in the same specimen, a good fit of the resistivity with the phenomenological percolation model, may be obtained by combining the contributions of the resisitivity above and below T_{M-SC} by a single expression in the temperature region between 20 and 400K. We found that the estimated results are in good agreement with the obtained experimental data. The maximum magnetic entropy change ($\Delta S_{\rm M}$) and the relative cooling power (RCP) for the composition x=0.1 are found to be, respectively, 4.20 J kg⁻¹ K⁻¹ and 238 J kg⁻¹ for a 5-T field change, making of this material a promising candidate for magnetic refrigeration near room temperature. Arrott plot analyses and a universal curve method were applied to study the order of the magnetic transition in this system.

Keywords: Nanocrystalline manganites, Rietveld refinement, magnetic properties, modified sol-gel Pechini method

Katarzyna Kowalska¹, Andrzej Hilczer², Bartłomiej Andrzejewski², Ewa Markiewicz², Vasyl Kinzhybalo¹, Adam Pietraszko¹


- 1. Institute of Low Temperature and Structure Research, PAS, Wrocław, Poland
- 2. Institute of Molecular Physics, PAS, Poznań, Poland

email: k.kowalska@int.pan.wroc.pl

Nanocrystalline ferrites are known as the remarkable classes of materials due to their fascinating application. Of particular interest are hard-soft ferrite composites, especially since they can be considered as magnetically exchange coupled systems [1, 2]

The $SrFe_{12}O_{19}/CoFe_2O_4$ composite has been obtained by solid state reaction at T=1050 °C and various synthesis time t=4 h, 8 h, 1^4 h and 22 h. The X-ray diffraction (X'Pert PANalytical) indicates in the samples obtained at t=4 h, 8 h, 14 h three phases: $SrFe_{12}O_{19}$ ($P6_3/mmc$), $CoFe_2O_4$ (Fd-3m) and Fe_2O_3 (R-3c), whereas in the sample sintered for 22 h only $SrFe_{12}O_{19}$ and $CoFe_2O_4$, which reveal different morphology in Scanning Electron Microscopy images (FEI Nova NanoSEM). Dielectric response (pellets, Alpha-A Novocontrol) and temperature variation of magnetization (PPMS, VSM probe) of the sample sintered for t=22 h are shown in Figure 1. The temperature and frequency dependences of ε^* were found to be correlated with respective dependences of σ' and related to highly conducting grains with poor conducting grain boundaries of the ferrites [3].

- [1] D. Roy, C. Shivakumara, P. S. Anil Kumar J. Magn. Magn. Mater., 321 (2009) L11.
- [2] S. M. Hoque, C. Srivastava, F. Kumar, N. Venkatesh, H. N. Das, D. K. Saha, K. Chattopadhyay, Mater. Res. Bull., 48 (2013) 2871.
 - [3] K. Iwauchi, Jpn. J. Appl. Phys. 10 (1971) 1520.

Figure 1. Temperature dependences of dielectric permittivity ε' , ε'' , electric conductivity σ' and magnetization M (ZFC- zero field cooling, FC- field cooling conditions).

Keywords: ferrite, composite