Morris, P.J. Chupas, L. Monconduit, C.P. Grey, J. Am. Chem. Soc. (2016) 138, 2352

Figure 1. Schematic of the sodiation processes in antimony anodes

Keywords: pair distribution function analysis, batteries, in operando

MS19-O3 Quasi-Elastic Neutron Scattering Studies on Solid Electrolytes for all-solid-state Lithium Batteries

Didier Blanchard¹, Jon Steinar G. Myrdal¹, Dadi Sveinbjornsson¹, Peter NGene², Petra de Jongh², Tejs Vegge¹

1. Department of Energy, Technical University of Denmark (DTU), Denmark

2. Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, The Netherlands

email: dibl@dtu.dk

The development of better batteries is paramount for market penetration of electrical vehicle and integration of renewable energy sources into the grid. For today's best technology, state-of-the-art lithium-ion battery, limited improvement in capacity and cost are expected because of the use of organic liquid or gel electrolytes limiting the choice of electrode materials and exposing to safety concerns. A choice alternative is to use solid electrolytes instead.

The high temperature phase of lithium borohydride (LiBH₄), hexagonal crystal structure at temperature above 383 K, is a fast Li+ conductor ($\sigma \sim 10^{-4}$ W⁻¹.cm⁻¹).^[1] This property is kept at room temperature by stabilizing the hexagonal phase with Li halides^[2] or confining LiBH₄ in nanoporous scaffolds.^[3]

We have studied the Li⁺ diffusion in LiBH₄ with Density Functional Theory (DFT) coupled to Quasi-Elastic Neutron Scattering (QENS). DFT shows that lithium defects such as Frenkel pairs are easily formed at room temperature (E_f = 0.44 eV) and low energy barriers (0.3 eV) are found between stable defect sites, giving rise to high defect mobility (Fig.1-a). The most favorable mechanism for the Li⁺ conduction is calculated to occur in the hexagonal plane. The QENS results at 380 K show long range diffusion of Li⁺, with jump lengths of one unit cell in the hexagonal plane and rates in agreement with DFT. At 300 K, QENS reveals jumps of shorter length (-2 Å), which could correspond to jump of Li⁺ interstitials to intermediate lattice sites, in agreement with DFT.^[4]

QENS was also used to probe the dynamic of the BH₄⁻ anions in LiBH₄ confined in nanoporous SiO₂. Four quasi-elastic components were found in two different temperature domains. At low temperature, < 170 K, the components are an order of magnitude broader than those at high temperature, however still below the phase transition (Fig.1-b). The narrower components are associated with reorienting BH₄⁻ anions in crystalline LiBH₄, while the broader components, with much more rapidly reorienting BH₄⁻, no be associated with the fraction of LiBH₄ located at the SiO₂ surfaces, reflecting a disruption of the bulk crystal lattice. It suggests that the high Li⁺ conductivity takes place at the interface between LiBH₄ and SiO₂.

[1] Matsuo et al., Appl. Phys. Lett. 2007, 91, 224103.

[2] Sveinbjörnsson et al., J. Phys. Chem. C 2013, 117, 3249.

[3] Blanchard et al., Adv. Funct. Mater. 2014, 1.

[4] Myrdal et al., J. Phys. Chem. C 2013, 117, 9084.

Figure 1. a) DFT energy path for interstitial Li diffusion. b) LiBH_/SiO_ neutron inelastic temperature scans. The four quasi-elastic components correspond to reorientational diffusion of the BH_i along the C_ - C_ axis for the interfacial LiBH_4 (low temp.) and crystalline $\dot{L}iBH_4^-$ (high temp.).

Keywords: Battery, Quasi-elastic Neutron Scattering, Density Functional Theory, all-solid-sate battery, solid electrolyte

$\frac{\text{MS19-O4}}{\text{MS19-O4}}$ Characterization of cation ordering, oxygen vacancy distribution and proton sites in hexagonal and cubic $\text{BaTi}_{1-x}\text{Sc}_x\text{O}_{3-\delta}$

Paul F. Henry^{1,2}, Nico Torino², Habibur S.M. Rahman², Christopher S. Knee², Sten G. Eriksson², Stefan T. Norberg², Tor S. Bjørheim³, Reidar Haugsrud³, Sam Callear⁴, Ron Smith⁴

1. European Spallation Source ERIC, Lund, Sweden

2. Chalmers University of Technology, Gothenburg, Sweden

3. University of Oslo, Norway

4. STFC, Didcot, UK

email: paul.henry@esss.se

Proton conducting oxides find applications as electrolyte materials in fuel cells, steam electrolysers and hydrogen and humidity sensors. Proton conducting fuel cells, which use H₂ as a fuel, stand out as a promising technology for future clean energy generation. However, its success relies on the discovery of novel electrolyte materials with high protonic conduction at intermediate temperatures (200 - 600 °C). Acceptor doped perovskites are actively studied in the search for improved proton conducting materials. We have synthesized and characterized the proton conducting properties of the series $BaTi_{1,x}c_x 0_{3,\delta}$ (0.1 $\le x \le 0.8$). [1,2] The series shows a transition from a 6H perovskite structure at low scandium doping to a cubic phase for $x \ge 0.5$. All the doped series show hydration behavior indicative of filling oxide ion vacancies within the structure and that protons are the dominant charge carriers below 600 °C. The conductivity of the materials with the 6H structure is significantly lower than those with the cubic structure. X-ray data suggest different oxygen vacancy ordering within the 6H perovskite structure at low doping levels, whereas the vacancies are distributed randomly in the cubic structure with no evidence of long range ordering of the Ti and Sc ions on the B-site. However, due to the weak scattering from oxygen cf. the transition metals and barium, coupled with the similar scattering power of the Ti and Sc, the presence of cation and/or oxygen ion order and the driving force for the phase transition to the cubic structure are unknown. Moreover, the origin of the poorer conductivity of the 6H cf. the cubic structure upon hydration is also unknown and is likely related to the proton sites and the exchange pathways within the material. Neutron powder diffraction (NPD) and recent in situ studies using combined NPD/thermogravimetric analysis resolving these key questions will be presented and coupled to DFT calculations.

[1] S.M.H Rahman, I. Ahmed, R. Haugsrud, S.G. Eriksson, C.S. Knee. (2014) Solid *State Ionics*, **255**, 140-146.

[2] S.M.H. Rahman, S.T. Norberg, C.S. Knee, J.J. Biendicho, S. Hull, S.G. Eriksson, (2014) *Dalton Transactions*, **43**, 15055.

Keywords: neutron, powder diffraction, structure