<u>MS21-03</u> Guest – induced polymorphism and quenching of disorder in the Hofmann spin-crossover compound $Fe(Pz)Pt(CN)_4$ studied by *in-situ* powder diffraction.

Céline Besnard¹, Delgado Pérez Maria Teresa², Tissot Antoine³, Schouwink Pascal¹

1. Laboratoire de cristallographie, University of Geneva, Switzerland

2. Département de Chimie Physique, University of Geneve, Switzerland

3. INSTITUT LAVOISIER CNRS : UMR8180, Universitllé de Versailles Saint-Quentin-en-Yvelines, France

email: celine.besnard@unige.ch

The Hofmann-chlatrate Fe(Pz)Pt(CN)₄ has received significant attention due to its spin transition with a large hysteresis at room temperature and the possibility of bidirectional light switching. The spin-crossover behaviour, and hence colour change, can be modulated by means of absorbed gas species¹, making this family of compounds very attractive materials for the design of gas sensors. The tetragonal crystal structure of both the HS and the LS state is formed by 2D layers of Fe(Pt)(CN)_ linked by the pyrazine ligands. In both guest-free HS and LS structure, disordered pyrazine molecules rotate around the Fe-Fe axis. As expected, most bulky guest molecules stabilize the HS state due to steric effects. Interestingly, the reverse was observed for CS2-absoprtion, which was theoretically attributed to the molecule-specific sorption site, which in this case suppresses the rotational movement of the pyrazine rings4

In order to get a better insight on the chemical sensitivity of the spin crossover properties, we have experimentally studied the effects of different gas molecules of various sizes (ethylene C_2H_4 , propadiene C_3H_4 and dimethylether C_2H_6O) on the thermal spin-crossover transition. The samples were loaded in glass capillaries at a gas pressure of 1 bar, and synchrotron radiation X-ray powder diffraction data were recorded in-situ as a function of temperature and applied gas pressure. In agreement with the literature, the unloaded sample undergoes a phase transition with a small hysteresis ($T_{(down)}$ 283 and $T_{(up)}$ 309K). While the smallest guest molecule C_2H_4 shifts this tetragonal – tetragonal transition by a small ΔT (T_(down) 265K, T_(up) 278K), the absorption of the larger dimethyl ether and propanediene (loaded at 350K) causes a structural transformation to a monoclinic HS phase, whose structure was solved from the in-situ powder diffraction data. In structure, pyrazine disorder is quenched. this Additionally, the spin transition is significantly shifted to lower temperatures ($T_{(down)}$ 207K, $T_{(2000)}$ 207K, for propanediene and $T_{(down)}$ 202K for DME). This exciting results illustrate that the geometry of gas molecules has a large impact on the guest-host interaction even in this very simple member of the Hofmann-family.

 M. Ohba and others Angew. Chem. Int. Ed., 2009, 48, 4767–4771. 2 H. Ando and others Chem. Phys. Lett., 2011, 511, 399–404.

Figure 1. The absorption of dimethyl ether and propanediene causes a structural transformation to a monoclinic phase in which the pyrazine rotational disorder is quenched.

Keywords: spin crossover, in situ powder diffraction, gas sorption