MS15 Minerals and materials

Chairs: Frederic Hatert, Roland Nilica

MS15-P1 Synthesis and characterization of Sb₃O₄F, Y_{0.49}Sb_{2.51}O₄F, and other Sb-O-F compounds

Sk Imran Ali1, Mats Johnsson2

1. Post-doc research fellow, Stockholm University S-10691 Stockholm Sweden

2. Prof. , Department of Materials and Environmental Chemistry, Stockholm University S-10691 Stockholm Sweden

email: skimran1984@gmail.com

Six different Sb³⁺-O-F compounds have previously been reported. Two are orthorhombic, designated as L-and M-SbOF,¹ one is cubic denoted as H-SbOF, one is glass¹ and the remaining two phases are monoclinic denoted as α -Sb_2O_3F, β -Sb_2O_3F, 2 -One more compound, Sb_Q-F, is theoretically predicted from the Sb_F-Sb_Q-phase diagram, however, it is not yet found experimentally. All the Sb-O-F compounds show framework type of structures. The main structural unit consists of different kinds of SbQ_3E, SbQ_3F, SbF_4E, SbOF_3E, SbO_4E polyhedral units, where Sb³⁺ is equipped with a lone-electron-pair, E.

H-, L-, M- and the amorphous form of SbOF are synthesized by solid state reactions at different temperatures from mixtures of Sb₃F and Sb₂O₃ (1:1 ratio). The compounds α -Sb₂O₄F₅ and β -Sb₂O₅F₅ were synthesized in an aqueous solution of NH₄F and SbF₃ with molar ratio of 0.05:1.¹ Synthesis via hydrothermal techniques havenot previously not been reported for these compounds.

In this study Sb₃O₄F, a new Sb³⁺-O-F compound, has been synthesized by hydrothermal techniques. We have also synthesized $Y_{0.5}$ Sb₅O₄F by introducing YF₃ as one of the reactants. The structural characterization is made from single crystal data will be extensively discussed. Single crystals of the two previously known compounds M-SbOF and α -SbO₂O₅F₈ were also synthesized by the same technique differing from the previously known solid state synthesis. A comparison is made with previously reported compounds in the Sb3⁺-O-X system (X = F, Cl, Br, I).

[1] A. S. Astrom, Acta chem. Scand., 1971, 25, 1519–1520.

[2] A. A. Udovenko, L. A. Zemnukhova, E. V Kovaleva and G. A. Fedorishcheva, *Russ. J. Coord. Chem.*, 2004, 30, 618–624.

[3] A. V. Kalinchenko, F. V., Borzenkova, M.P., and Novoselova, *Zh. Neorg. Khim.*, 1983, **28**, 2426.

Keywords: Hydrothermal synthesis, Transition metal oxo-halides, Single crystal X-ray diffraction

MS15-P2 New topology of cesium aluminum borophosphate: synthesis, crystal structure and IR-spectroscopy investigation

Vladislava I. Belik1, Larisa V. Shvanskaya1, Elena Y. Borovikova1

1. M.V. Lomonosov Moscow State University

email: vladislava.belik@mail.ru

Borophosphates have received much attention because of their fascinating structural architectures and potential applications in sorption, catalysis, optics and ion exchange. An open-framework cesium aluminum borophosphate, CsAl₃BP₆O₂₀, with novel topology of layered anionic borophosphate partial structure was synthesized by solid state reaction method. The crystal structure was determined from single-crystal X-ray data ($R_1 = 0.043$): S.G. *Pbeat*, a = 11.815(2), b = 10.042(2), c = 26.630(4) Å, Z = 8, V = 3159.5(10) Å³. The structure contains the 16-member ring borophosphate layers stacked along [001] (Fig.1) and interconnected by aluminum octahedra. The resulting three-dimensional framework is characterized by channels running parallel to [021] and [100] directions formed by six- and five-membered rings, respectively. Cs ions reside within these channels. The topological relations between the CsAl₃(P,O₁₀)₂ [1] and CsAl₂BP₆O₂₀ structures are discussed.

The MID-FTIR spectrum (Fig.1) of new borophosphate corresponds well to revealed crystal structure. Its interpretation can be made on the basis of characteristic vibrations of PO₂, PO₃ and BO₄ groups, P-O-P and B-O-P bridges. The high frequency bands between 1280–1230 cm⁻¹ are attributed to the antisymmetric vibrations of O-P-O bonds v_a(PO₂). The bands in the region 1205 – 1150 cm⁻¹ are assigned to symmetrical vibrations of O-P-O bonds v_b(PO₂). The bands in the region from 1140 to 930 cm⁻¹ belong to the asymmetrical stretching vibrations of PO₂, PO₃ and BO₄ units. Strong bands at 930–900 cm⁻¹ and weak bands at 775–680 cm⁻¹ can be, respectively, attributed to the antisymmetric and symmetric stretching vibrations of PO-P and B-O-P bridges. The low-frequency region (650-400 cm⁻¹) is quite complex: bending vibrations contribute to the absorption in the 650-450 cm⁻¹ region.

The $CsAl_2BP_6O_{20}$ presents a first example of borophosphates with anionic partial structure containing the triphosphate groups and characterizing by B:P equal to 1:6.

[1] Lesage J., Guesdon A., Raveau B. // J. Solid State Chem. 2005. V. 178. P. 1212.

Figure 1. The 2D borophosphate anionic partial structure and infrared absorption spectrum of $CsAl_2BP_6O_{20}$.

Keywords: New topology of borophosphate, solid state reaction method

MS15-P3 Mixed alkali/alkaline earth trielides of the BaAl₄-type structure: A combined synthetic, crystallograhic and theoretical case study for the 'coloring' in polar intermetallics

Martha Falk1, Carolin Meyer1, Matthias Kledt1, Caroline Röhr1

1. Institut für Anorganische und Analytische Chemie, Universität Freiburg

email: martha@almandine.chemie.uni-freiburg.de

The 'coloring' [1], the distribution of different atoms *M* among the apical/basal site of the pyramids in the BaA1₄-type (d), has already been extensively investigated for hundreds of ternary TM/*p*-block compounds (cf. references in [2-4]). Concerning the electronic stability the optimized 'bond energy' of 14 ve/fu is sufficiently proven [5,6], even though the structure type occurs from 12 to almost 15 ve/fu. Using metallic *M* and ionic *A*^{*n*+} radii, the ratio $r_M:r_A$ of the BaA1₄-type ranges from 0.89 to 1.04 [4].

The 'coloring' of the *M* anion by the triels, which differ both in size and electronegativity χ , have been systematically investigated for the Ba series (Al/Ga/In), SrGa₄ to SrAl₄ (+In, [7]) (14 ve/fu) as well as for the Ga-containing K/Rb tetraindides (13 ve/fu). Carefully performed powder/single crystal structure analysis of distinct compounds (black symbols) reveal the ThCr₂Si₂ ordering only (*I*4/*mmm*), no indications towards the CaBe₂Ge₂ or other 1:1:3 ordering variants are observed.

The calculated (FP-LAPW DFT) Bader volumes (V_{BB}) of the binary trielides indicate no significant size differences for M_a and M_c , but a substantial more negative charge (q) of M_a^+ , due to the larger Coulomb interaction M_a —A. Accordingly, all Ga-phases show a strong preference for the electronegative Ga to occupy the M_a site (red curves in (a) and (b)). The preference is more restrictive for shorter A—M contacts, i.e. smaller r_A (e.g. difference Sr/Ba in (a)). The calculated 'coloring energy' ([5], ΔE_{tot} (CaAl^b, $Ga^2 \Leftrightarrow CaGa^b, Al^a$, 0.46 eV) is by far larger than the difference of the M_a — M_a bond energies for Al/Ga (0.14 eV).

For mixed Al/In compounds (c) the M distribution changes with r_{x} : For smaller Sr with higher 'site energy' $A-M_a$. In with larger χ occupies the M_a site. In contrast, for A=Ba the less electronegative element Al occupies this site. This change of the site preference could be verified by the calculations. It is a striking example for the important contribution of Coulomb interactions in the lattice energy of polar intermetallics.

[1] G. J. Miller, Eur. J. Inorg. Chem. 523 (1998)

[2] Q. Lin et al., Z. Anorg. Allg. Chem. 641, 375 (2015)

[3] T.-S. You et al., Bull. Korean. Chem. Soc. 34, 1656 (2013)

[4] M. Wendorff, C. Röhr, Z. Naturforsch. 68b, 307 (2013)

[5] U. Häussermann et al., J. Am. Chem. Soc. **124**, 4371 (2002)

[6] M. Wendorff, C. Röhr, Z. Anorg. Allg. Chem. 631, 338 (2005)

[7] C. Meyer, K. Köhler, C. Röhr, Z. Kristallogr. Suppl. 35, 86 (2015)