MS16 Structure-property relationships in high pressure crystallography

Chairs: Andrzej Grzechnik, Paul Attfield

MS16-P1 High-pressure studies of [4]helicene-TCNQ complex

Michał A. Dobrowolski1, Mateusz Piędzio1, Michał K. Cyrański1

1. University of Warsaw

email: miked@chem.uw.edu.pl

[4]helicene is a chemical compound composed of four conjugated aromatic rings [see fig. 1]. The molecule is deviated from planarity. This feature is a result of steric interactions between C-H atoms six-membered aromatic rings. The interplanar angle between pairs of adjacent rings of [4]helicene molecule is 26.8°. This compound charge-transfer with forms а complex 7,7,8,8-tetracyanoquinodimethane (TCNQ), where [4]helicene is an electron pair donor and TCNQ is an acceptor. The molecules are arranged in stacks resulting in a sandwich-like columns. Forming a complex causes that the aforementioned angle is reduced to a value of 25.4°. In this report we present the synthesis and structural analyses of [4]helicene-TCNQ complex under different pressures. The complex was studied at atmospheric pressure, 0.44 Gpa, 1.68 GPa and 2.1 GPa. Geometrical changes and intermolecular interactions of [4]helicene -TCNQ complex are analyzed under high-pressure.

Figure 1. [4]helicene-TCNQ complex.

Keywords: [4]helicene, tetracyanoquinodimethane, high-pressure, X-ray diffraction, Raman spectroscopy

MS16-P2 Stability of (NH₄)₂V₃O₈ and Cs₂V₃O₈ fresnoites at high pressures

Andrzej Grzechnik¹, Hans-Conrad zur Loye², Tie-Zhen Ren³, Karen Friese⁴

1. Institute of Crystallography, RWTH Aachen University

2. Department of Chemistry and Biochemistry, University of South Carolina, Columbia, UnitedStates

3. School of Chemical Engineering, Hebei University of Technology, Tianjin, China

4. Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Jülich, Germany

email: grzechnik@xtal.rwth-aachen.de

Vanadates $A_2V_3O_8$ (A: K, Rb, NH₄, Cs) have the fresnoite structure (*P4bm*, Z=2) at atmospheric conditions [1-3]. They are built-up of layers of corner-sharing V⁵⁺O₄ tetrahedra and V⁴⁺O₂ tetragonal pyramids, separated by the A⁺ cations. K₂V₃O₈ and Rb₂V₃O₈ transform to incommensurate phases at low temperatures [4.5] due to rotations and displacements of rigid V⁵⁺O₄ and V⁴⁺O₅ polyhedra.

We have studied pressure-induced structural instabilities of $(NH_4)_2V_1O_8$ and $Cs_2V_2O_8$ using single-crystal x-ray diffraction in diamond anvil cells. $(NH_2)_1V_2O_8$ undergoes a reversible phase transition at 3 GPa to a three-dimensional structure (*P4/mbm*, *Z*=2), formed by corner-sharing V⁵⁺O₂ trigonal bipyramids and V⁴⁺O₆ octahedra [1]. The chains of these corner-connected polyhedra form a framework with tunnels along the *c* direction. Vanadate framework with tunnels along the *c* direction. Vanadate framework of the high-pressure polymorph of $(NH_4)_2V_2O_8$ is unique since all the polyhedra are exclusively connected via common corners.

Cs₂V₃O₈ undergoes a reversible phase transition at 4 GPa [3]. Up to the phase transition, the compression has little effect on the polarity of the structure. Above 4 GPa, the structure is still polar but the pseudo-symmetry with respect to the corresponding space group *P4/mbm* abruptly increases. Both structures consist of layers of corner-sharing V⁵⁺O₄ tetrahedra and V⁴⁺O₅ tetragonal pyramids, separated by the Cs⁺ cations. The unit-cell volumes, at which the phase transitions in (NH₄)₂V₃O₈ and Cs₂V₃O₈ at atmospheric pressure.

The unit-cell volumes are reduced by 22% and 20% in (NH₄)₂V₃O₈ and Cs₅V₃O₈ upon compression to approximately 7.0 GPa and 8.6 GPa, respectively. The fact why modulated structures, like those in K₅V₃O₈ and Rb₅V₃O₈ at low temperatures [**4**,**5**], are not observed in the freshoites with larger NH₄⁺ and Cs⁺ cations upon compression is explained by the suppression of rotations and displacements of the polyhedra around the V⁴⁺ and V⁵⁺ cations.

[1] A. Grzechnik et al., Dalton Trans., 2011, 40, 4572.

[2] J. Yeon et al., Inorg. Chem., 2013, 52, 6179.

[3] A. Grzechnik et al., J. Solid State Chem., 2016, 238, 252.

[4] B.C. Chakoumakos et al., J. Solid State Chem., 2007, 180, 812.

[5] R.L. Withers et al., J. Solid State Chem., 2004, 177, 3316.