

Figure 1. DTA curve showing a first melt at $T = 440^{\circ}$ C, a second one at $T = 515^{\circ}$ C and solidification at $T = 436^{\circ}$ C.

Keywords: Intermetallics, modulation, powder diffraction

MS26-P3 ErCu_{0.5}Ga_{3.5} – A (3+1)D-incommensurately modulated variant of the BaAl₄ type

Margarida S. Henriques¹, Yuriy Verbovytskyy², Václav Petříček¹, Michal Dušek¹, Vasyl Kinzhybalo³, António P. Goncalves⁴

- 1. Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague, Czech Republic
- 2. Department No. 27, Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Naukova str. 5, 79-060 Lviv, Ukraine
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna str. 2, PO Box 1410, 50-950 Wroclaw, Poland
- 4. CCTN, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal

email: henriques@fzu.cz

Ternary intermetallic systems R-Cu-Ga were widely studied for all the rare earth metals and uranium [1,2]. The gallium rich intermediate phases RCu Ga, were reported to crystallize as tetragonal or orthorhombically distorted derivatives of the BaAl₄-type structure [3]. Moreover, some of these phases tend to form modulated structures due to disorder that might occur in the R and/or Cu/Ge crystal sublattices [4].

Single crystals of the ternary compound $ErCu_{0.5}Ga_{3.5}$ were grown by the self-flux method. The structure of $ErCu_{0.5}Ga_{3.5}$ was determined by single-crystal X-ray diffraction recorded at 120 and 300 K. The compound crystallizes in an incommensurately modulated (3+1)D structure, being related to the tetragonal $BaAl_4$ -type. The structure was refined in the monoclinic superspace group $X2/m(\alpha.0.g)00$, with modulation vector q = (0.184(2), 0, 0.347(1)), a = 413.99(9), b = 963.83(11), c = 410.52(16) pm, and $b = 90.11(1)^\circ$ at 120 K. The modulation wave occurs in the Ga/Cu disordered sublattice and q was found to be similar at both temperatures. Furthermore, analysis of the reciprocal pattern of $ErCu_{0.5}Ga_{3.5}$ also indicates a twinning effect, described by a two-fold axis around a^* .

- [1] Yu. Verbovytskyy, A.P. Gonçalves, Chem. Met. Alloys 5 (2012) 129.
- [2] Yu. Verbovytskyy, A.P. Gonçalves, Intermetallics 33 (2013) 16.
- [3] V.Ya. Markiv, et al., Dopov. Akad. Nauk Ukr. RSR, Ser. A 7 (1985) 76.
- [4] Yu. Verbovytskyy, M. Pasturel, T. Roisnel, A.P. Gonçalves, XIV Scientific Conference "Lviv Chemical Readings 2013", Book of Abstracts, Lviv, Ukraine, 26-29 May 2013, H5.

Keywords: incommensurate, occupation modulation, intermetallics