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Computational tools have found an increasing use

throughout various topics and fields in chemistry. From
the prediction of physicochemical properties1, reaction
types and products2 or biological affinities towards
macromolecules3 up to the high-dimensional problem of
crystal structure prediction, so-called Machine Learning
models experience a steady increase in application.
Machine Learning models are considered a collection of
algorithms that can be used to find regularities,
irregularities and correlations in data sets independent of
their dimensionality. The resulting mathematical
constructs can then be used to predictively characterize
previously unseen data. In crystallography, recent studies
have set out to use such algorithms in order to predict
general crystallinity of small molecules4, their
crystallization propensity in different solvents5, or the
crystallization conditions of proteins6.

The most important prerequisite for a high-performing
machine learning model is a sufficiently large data set of
high integrity. Unfortunately, due to the lack of negative
results in commonly used collections like the CSD,
crystallization data suited for machine learning tasks is
sparse. Therefore, several years back we set out to record
both positive and negative results for every crystallization
attempt made in the analytics group at the Novartis
Institute for Biomedical Research. This data is stored in
an SQL data base equipped with a touch-screen based
graphical user interface, enabling easy access for both
experimenter as well as programmer.

Next to numerous statistical analyses, we set out to use
machine learning for the prediction of suitable conditions
to crystallize small, drug-like molecules. In particular, we
focused on the prediction of organic solvents to
crystallize a given compound in. While the individual
performances of the first generation of machine learning
models for this were rather frugal, a newly devised
ensemble approach embodying additional data allows us
to rationalize our crystallization experiments and thus
significantly reduce the experimental effort required to
yield crystalline materials.
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N-hydroxy amidoximes are one of the most important

amidine derivatives with synthetic utility and various
biological applications. They have been used extensively
as starting materials for the preparation of nitrogen-rich
heterocyclic compounds. Characteristically, they can also
react or cyclize with electrophiles such as aldehydes,
ketones, carboxylates, and acids. In practice, they have
applications in drugs, dyes, polymers, and many other
materials as well.

With this work, we provide a synthesis of N-hydroxy
amidoksim from the reaction between furfurylimidoyl
chloride and N-morpholine [1]. The structure of
(Z)-(5-methylfuran-2-yl) (morpholino) methanone oxime
was investigated with experimental (X-ray single crystal
technique, NMR and FT-IR spectroscopic techniques)
and theoretical (DFT) techniques. The compound
crystallizes in monoclinic space group P21/c. Crystal
structure is stabilized by inter-molecular O-H…N and
C-H…O hydrogen bonds. The Hirshfeld surface was
drawn for visualizing the van der Waals distances and to
determine the interaction sites. It is understood that
O-H..N and C-H…O type hydrogen bonds are dominant
interactions on the packing. When 2D fingerprint plot are
partitioned, H-H interactions are seen to be the most
dominant interactions with percentage of 60.2. And then
O-H/H-O interactions with 20.0% and C-H/H-C
interactions with 12.0% come. The puckering amplitude
for the six-membered ring was determined as
Ǫ=0.572(3)Å. The gas phase geometry optimization and
vibrational frequencies calculations were carried out
using density functional theory (DFT) incorporated in
B3LYP with 6-311++(d,p) basis set. The detailed
vibrational assignments were performed on the basis of
the potential energy distributions (PED) of the vibrational
modes. Additionally, HOMO-LUMO energy gap, natural
bond orbital (NBO) analysis and nonlinear optical (NLO)
properties of the compound were performed.
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