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Crystallographers are probably most familiar with tilings, uniformly discrete sets of

points, or algebraic systems of vectors and tensors. On occasion, one encounters periodic

energy landscapes, but that is not how crystallography is introduced. Frank Farris

introduces (two-dimensional) crystallography using functions from the plane to the

plane – more precisely, from the complex plane to the complex plane. The text uses these

‘wavefunctions’ to describe wallpaper symmetries, distorting photographs to get esthe-

tically interesting crystallographic patterns – in a book intended to attract mathematically

proficient undergraduate students to crystallography.

Here is how it works.

There is a target photograph, as in Fig. 1. The wavefunction maps the plane to the

photograph, and the plane (left of the photograph) is colored so that every point’s color is

the color of its image point on the photograph. The result is that the domain of the

wavefunction has a pattern induced by the wavefunction, and if that function has been set

up properly, that pattern is crystallographic.

This example appeared in the discussion of color symmetries. Notice that the purple

and green regions are bounded by black curves, which means that all those blackened

points are mapped to the black line down the center of the photograph. In all the periodic

examples, the entire plane is mapped (repeatedly) into a portion of the photograph.

Here is how the patterns are constructed. The complex plane is the set C =

fxþ iy: x; y 2 Rg = fr cos � þ ir sin �: r � 0 and � 2 ½0; 2�Þg, where i ¼ ð�1Þ1=2 [so that

Euler’s formula gives us expði�Þ = cos � þ i sin �] and r = ðx2 þ y2Þ
1=2. Associating a point

ðx; yÞ 2 R2 with a complex number xþ iy 2 C, a function from 2-space to itself – viz.

from the plane to a photograph – can be represented by a function from C to C.

Suppose you colored the plane as in Fig. 2 (right image); this is an example of a ‘color

wheel’. The origin is in the white center, the real axis is horizontal (so that 1 is colored

red) while the imaginary axis is vertical (so that i is on the boundary between green and

yellow). The polynomial f ðzÞ ¼ z2 maps a point z = rðcos � þ i sin �Þ to a point z2 =

r2½cosð2�Þ þ i sinð2�Þ�, doubling its angle � while pushing it away from the unit circle. If we

colored the plane to show where this wavefunction f sends points, we would get the image

on the left of Fig. 2.

Heading towards periodic patterns, if gðzÞ = gðxþ iyÞ = expð2�iyÞ = cosð2�yÞ

+ i sinð2�yÞ, we get Fig. 3 (on the left): a point ðx; yÞ is mapped to expð2�iyÞ = cosð2�yÞ

+ i sinð2�yÞ, so we get horizontal bars. For example, starting from 1 = 1 + 0i in the middle

of a red bar [as it is mapped to 1 = 1 + 0i in Fig. 2 (right)], i is on the next boundary up

between yellow and green, as that is where g maps i = 0 + 1i.

Farris exhibits a function (which happens to be hðzÞ = ð1=3Þfexpð2�iyÞ

+ exp½2�ið31=2x� yÞ=2� + exp½2�ið�ð3Þ1=2
x� yÞ=2�g) to obtain a periodic coloring of the

domain, the color of a point indicating where in Fig. 2 (right image) the point was sent.

Now, h(0) = 1 (so that the origin is colored red) while h(1) = h½1=2þ ið3Þ1=2=2� =

. . . h½1=2� ið3Þ1=2=2� = 0 (so that 1 is colored white), and repeating for other points we

obtain Fig. 3 (right).

The primary construction in this book is to convert symmetries into formulas for

complex functions. A symmetry of a function f :C! C is a function �:C! C such that
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for every z 2 C, f ½�ðzÞ� ¼ f ðzÞ. For example, the complex

conjugacy function xþ iy 7! x� iy (often denoted �zz)

captures reflection across the real axis, so that f ð�zzÞ ¼ f ðzÞ

for all z 2 C if and only if the pattern of f has the horizontal

axis as a mirror. Similarly, the rotation by � degrees about

the origin is captured by the function z 7! expði�Þz, so

that f ½expði�Þz� ¼ f ðzÞ if and only if the pattern of f is

preserved by rotation by � around the origin. For example,

Farris chose a; b 2 C (which he did not reveal) to obtain a

function

jðzÞ ¼ z5 þ �zz5
þ aðz6 �zzþ z�zz6

Þ þ bðz4 �zz�6
þ �zz4z�6Þ

which describes how the points of Fig. 4 (left) are mapped to

the rhododendron of Fig. 4 (right). One can verify that jð�zzÞ =

jðzÞ and, with a little more work, that j½expð2�i=5Þz� = jðzÞ.

[We should mention that this is not the usual way complex

analysis works. Complex analysis usually considers those

functions for which the derivative as a limit

f 0ðzÞ ¼ lim
w!0

f ðzþ wÞ � f ðzÞ

w

is well defined, i.e. as the complex variable w tends to 0, the

quotient tends to one particular complex number f 0ðzÞ. Such

functions are called analytic, and the peculiar properties of

analytic functions are what makes complex analysis like a

magic act. But most of the periodic functions in the book are

not analytic, and thus much of the machinery of complex

analysis cannot be applied to them.]

Once the system for having the formulas reflect the

symmetries is set up, one can generate all the point

groups, frieze groups, wallpaper groups, color groups, and

more, by imposing restrictions on the formulas for functions

that generate the patterns with those symmetries. One can

also demonstrate that the list is exhaustive (at least for

dimension 2).

The motivation is largely generating artwork having desired

patterns. Several chapters are of the form: here is a class of

symmetry groups we are interested in, here are the restrictions

on the coefficients that entail these restrictions, here is an

example or two – a photograph and the resulting pattern – and

notice that the pattern has the desired symmetries. On rare

occasions, the text discusses a little about reconstructing the

original photo from the pattern – which gives an idea of how

the function works – but usually the focus is on the pattern and

its symmetries.

There are five special topics. Farris approaches quasi-

periodicity in the classical way, by introducing a (two-

dimensional) almost periodic wavefunction with (almost)

fivefold symmetry. Color symmetries are handled by rotating
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Figure 2
The polynomial f ðzÞ ¼ z2 maps the plane on the left to the plane on the
right, the latter being a standard color wheel. The colors of the points on
the left plane – the domain – indicate where those points are sent to on
the right plane. Colors occur twice on the left image as f doubles the
angle; the white region is proportionately larger as f pushes the points
away from the unit circle (alas, the figures are not on the same scale).

Figure 1
The pattern on the left shows where the wavefunction maps points to the
photograph on the right.

Figure 3
The function g maps the left plane to the color wheel obtaining a pre-
image periodic in one direction. The function h maps the right plane to
the color wheel, obtaining a pattern periodic in two (and more)
directions.

Figure 4
The pattern on the left exhibits both rotational and reflection symmetries.



the color wheel: assuming that there are c colors in the color

wheel, a function f :C! C has a color-turning symmetry at

the origin if, for each z 2 C, f ½expð2�i=cÞz� ¼ expð2�i=cÞf ðzÞ:

the c-fold rotation expð2�i=cÞ left of the equals sign rotating

the plane while the c-fold rotation right of the equals sign

rotates the color wheel.

Local symmetries are of particular interest. A wavefunction

may be the sum of two wavefunctions, f ¼ gþ h, where h has

� as a symmetry at a point z0 2 C but g does not, so that � is

not a symmetry of f. But if limz!z0
gðzÞ ¼ 0, then near z0, the

symmetry nearly holds, but as one moves away from z0, the

symmetry degrades (see Fig. 5).

A chapter on stereographic projection focuses on displaying

the symmetries of polyhedra, and once again, the focus is on

the resulting artwork. And for those interested in non-

Euclidean geometry, there is a chapter on patterns on

Poincaré’s hyperbolic half-plane.

Altogether, this is a very interesting and attractive book.

The target audience – mathematically capable under-

graduates – should find it enticing and accessible. Its textbook

structure makes it usable for a seminar course or independent

study as well as for private reading; however, it is dense

reading. The primary motivation is the artwork, and students

may be motivated to obtain some of the software and play

with images on their own or in a project. Farris does not

assume that the reader is familiar with complex numbers,

groups, rings, Fourier series, or even linear algebra: the book is

developed in an informal style with some of the results proven,

some relegated to exercises (there are 65 exercises), and some

to be taken for granted.

Farris writes that he had three audiences in mind: ‘the

working mathematician, the advanced undergraduate and the

brave mathematical adventurer’. For mathematicians, the

artistic context is the novelty: the mathematics is familiar, but

used in ways even mathematical crystallographers will prob-

ably find unfamiliar. For mathematical adventurers – which

clearly includes crystallographers, mathematical amateurs,

computer graphics engineers and hopefully some artists –

while the book does require some calculus, ‘ . . . everything

[else] we need will be built slowly as we go’.

I do have two laments. In a number of places, Farris does

not adequately explain what he is doing, and it takes a lot of

reading and reverse engineering to figure out what is going on.

In particular, one gaping hole in the book is what the wave-

functions are doing: given a photograph, the pattern is a

distortion of the photograph but the wavefunction maps

purple points to purple points and mauve points to mauve

points. A reader may find it rewarding to track what the

wavefunction does to the entire picture, for that should give an

idea of what the wavefunction does.

Second, while there are a number of nice references, there

aren’t citations for anyone interested in pursuing a subject.

This can give readers a false impression of the importance of a

topic, but it may be harder for a reader to find sources for

further study.

But, altogether, this is a fun and informal book that should

be interesting to readers at all levels, and certainly every

liberal arts institution should have a copy in their library.
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Figure 5
At the intersection of the yellow and black lines, the black line is nearly a
mirror for the dark purple oval with the four-legged figure, less so for the
surrounding light purple region, and not at all outside.


