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An analysis is presented of the new types of defects that can appear in

crystalline structures where the positions of the atoms and the unit cell

belong to the same Z-module, i.e. are irrational projections of an N >

3-dimensional (N-D) lattice � as in the case of quasicrystals. Beyond

coherent irrationally oriented twins already discussed in a previous paper

[Quiquandon et al. (2016). Acta Cryst. A72, 55–61], new two-dimensional

translational defects are expected, the translation vectors of which, being

projections of nodes of �, have irrational coordinates with respect to the unit-

cell reference frame. Partial dislocations, called here module dislocations, are the

linear defects bounding these translation faults. A specific case arises when

the Burgers vector B is the projection of a non-zero vector of � that is

perpendicular to the physical space. This new kind of dislocation is called a

scalar dislocation since, because its Burgers vector in physical space is zero, it

generates no displacement field and has no interaction with external stress fields

and other dislocations.

1. Introduction

Many complex intermetallic phases are so-called (periodic)

approximants (see, for instance, Gratias et al., 1995) of

quasicrystals (Shechtman et al., 1984; Shechtman & Blech,

1985) because their atomic structures are derived from a

parent quasicrystal of close composition. This quasicrystal is

usually described in the framework of N-dimensional (N-D)

crystallography: the actual structure is generated by cutting an

N-D periodic object of lattice � by the physical three-

dimensional space noted Ek, irrationally oriented with respect

to the N-D periods of � (Duneau & Katz, 1985; Kalugin et al.,

1985; Elser, 1986).

In that simple scheme, defects are best described in the N-D

space as locally broken orientational (twins) or translational

(boundaries and dislocations) symmetry operations of the

N-D lattice projected in Ek. For example, dislocations in

quasicrystals (Lubensky et al., 1986; Socolar et al., 1986;

Wollgarten et al., 1991, 1992) are defined using original

Volterra constructs in the N-D space with Burgers vectors B

belonging to the N-D lattice �. For a quasicrystal in a d-D

space embedded in a N> d-D space, the dislocation line is a

manifold of dimension N � 2 containing the complementary

orthogonal space E? of dimension N � d so that the observed

dislocation line in Ek has dimension N � 2� ðN � dÞ ¼ d� 2,

i.e. one dimension for three-dimensional objects.

Approximant phases can be described by rational projec-

tions of hypothetical quasicrystals defined by N-D crystals

(N> 3) of lattice � with atomic surfaces located at rational

positions of �. This induces the remarkable property that the
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atomic positions and the unit-cell vectors belong to the same

(or its simple submultiples) Z-module,1 say =k, that is the

(irrational) projection �̂�k of a lattice � in RN into Rd with

d<N:

=k ¼ f�̂�k� � R
d; � 2 � � RN

g:

The existence of the Z-module in crystallography is not

confined to quasicrystals and approximants. In fact, several

periodic structures have atoms possessing extra non-

crystallographic local hidden symmetries which can be viewed

as a long-range-ordered decoration on an underlying

Z-module. Such is the case for the Fe Wyckoff position in the

FeAl3 phase identified by Black (1955) and for both Ni and Zr

Wyckoff positions in the orthorhombic structure Cmcm of

NiZr (Kirkpatrick et al., 1962).

The question addressed in the present paper is the

following: what kind of new defects could possibly be gener-

ated when the atoms of the crystal, in addition to being

periodically spaced, are located on a long-range-ordered

subset of the nodes of a Z-module?

To give a first idea of what this question is about, let us

consider the example shown in Fig. 1. At a first glance, it

represents a slice in the ðx; yÞ plane of a simple cubic lattice of

a standard three-dimensional dislocation of Burgers vector

B ¼ ð0; 1; 1Þ aligned along the z direction. Whereas the edge

part of the dislocation is clearly seen in the ðx; yÞ plane, the

screw part along the z direction generates the one step height

shaded in light grey. The drawing Fig. 1(a) is immediately

understandable because of our natural spontaneous sense of

visualizing three dimensions. But, if we consider this drawing

for what it really is – in fact a simple two-dimensional tiling in

the plane – then this same defect shown in Fig. 1(b) is less

obvious: it is a partial edge dislocation of the two-dimensional

periodic tiling bounding a row of reconstructed tiles – here

rhombi rotated by 2�=3 – that form a stacking fault line. This is

now a partial dislocation in the two-dimensional subspace.

This example is quite trivial because the implied Z-module

has rank 3 but it becomes significantly more cumbersome to

decipher defects based on Z-modules of higher rank where we

lose our intuitive vision in ðN> 3Þ-D space as illustrated in Fig.

1(c). We shall designate this kind of defect a module dislo-

cation as opposed to the usual lattice dislocation to emphasize

the fact that its Burgers vector belongs to the Z-module and

not to the lattice.

In x2, we briefly recall the tools we need to build a coherent

crystallographic description of alloys having atoms located on

a Z-module, that we designate here as module-based alloys.

These include:

(a) the well known cut-and-project method used to generate

uniformly discrete sets of points that are quasiperiodic

decorations of high-symmetry Z-modules;

(b) the perpendicular shear technique that allows one to

generate periodic approximants from these high-symmetry

quasicrystals (Jarić & Mohanty, 1987; Gratias et al., 1995).

In x3, we discuss the nature of the defects that can be

generated while keeping the Z-module invariant. These are:

(a) twins as discussed by Quiquandon et al. (2016);

(b) translation boundaries characterized by fault vectors R

having irrational coordinates with respect to the unit-cell

reference frame;

(c) module dislocations including those astonishing meta-

dislocations found in specific approximants of i-AlPdMn

icosahedral quasicrystals [see, for instance, Feuerbacher

(2005) and Feuerbacher & Heggen (2010)] and the defects

observed in approximants of the d-AlCuMn decagonal phase

(Wang et al., 2016);

(d) original, new kinds of dislocations with Burgers vectors

having a zero component in the physical space, thus gener-

ating no displacement field and having no interactions with

other dislocations and external stress fields; we call them

scalar dislocations.

The last section of the paper summarizes our main

conclusions.

2. N-D description of module-based alloys

As already mentioned, several intermetallic periodic phases

have structures with atoms located on a fraction of the sites of

a Z-module. This happens each time the motif is made of
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Figure 1
(a) A mixed dislocation of Burgers vector B ¼ ð0; 1; 1Þ showing the edge
part on the plane ðx; yÞ and the screw part along z. (b) The same object
analysed as a two-dimensional tiling is a partial dislocation bounded by a
planar defect of vertically oriented rhombi; as shown in (a), this defect is a
dislocation of the Z-module generated by the projection of the three-
dimensional simple cubic lattice onto the ðx; yÞ plane: it is a module
dislocation. (c) Generating a similar module dislocation but from the cut
of a four-dimensional hypercubic crystal makes the area’s overall relief
much more difficult to grasp.

1
Z-modules are the natural extension of lattices. A Z-module of rank

N in R
d with d<N is the set = of points in R

d such that = :¼
f� ¼ n1e1 þ n2e2 þ . . .þ nNeN with n1; n2; . . . ; nN 2 Zg where the N vectors
ei are arithmetically independent (i.e. no non-zero integer combination of the
N vectors gives the null vector): (i) any Z-module of rank N in Rd is the
(irrational) projection of a lattice ZN in RN ; (ii) a Z-module of rank N in Rd

ðN> dÞ forms an enumerable dense set of points in Rd or in a non-empty
subspace of Rd; (iii) if d ¼ N the Z-module is trivially a lattice ZN.



atomic clusters with non-crystallographic symmetries, coher-

ently interconnected and parallel to each other. Similarly to

quasicrystals, these structures can be described as rational cuts

of abstract periodic objects in spaces of dimension N> d.

Describing and generating these module-based alloys require

a few ingredients that are discussed next.

2.1. Rank of the Z-module

The first ingredient is the rank N of the Z-module as

determined from the internal symmetry of the atomic cluster

forming the motif. In the easiest cases, this rank is directly

given by simple examination of the local symmetry of the

motif when it has a point symmetry higher than that of the

lattice of the crystal. For example, the rank N ¼ 6 is quickly

found for the many intermetallic phases that are approximants

of icosahedral quasicrystals because their main atomic motifs

are high-symmetry clusters, the atoms of which can all be

indexed as integer linear combinations of the six unit vectors

defined by the six quinary axes of the regular icosahedron.

For illustrating our purpose, we shall use here two two-

dimensional examples that can be analysed as two-

dimensional periodic (low) approximants of the famous

Penrose tiling (Penrose, 1979) built with the two golden

rhombi of acute angles 2�=5 and �=5. Here, the natural

dimension of the N-D lattice � is N ¼ 5 corresponding to the

Z-module generated by the regular pentagon.2 Such is the case

of the well known Dürer structure (Dürer, 1525) made of a

periodic arrangement of adjacent pentagons sharing an edge.

To make our toy model example a little more original, we

remove one vertex of the pentagon, getting then a bean

structure as shown in Fig. 2. In the five-dimensional frame,

this structure has a lattice Lk with a primitive unit cell

defined by A ¼ ð1; 1; 1; 1; 0Þ, B ¼ ð1; 0; 1; 1; 1Þ with three

translation orbits3 w1 ¼ ð0; 0; 0; 0; 0Þ, w2 ¼ ð0; 1; 1; 0; 0Þ and

w3 ¼ ð1; 0; 1; 0; 0Þ. The Dürer structure is obtained by adding

the fourth translation orbit w4 ¼ w2 þ w3 ¼ ð1; 1; 2; 0; 0Þ.

In some other cases, the determination of the rank of the

module is not so obvious.

Indeed, our second example shown in Fig. 2(b) is a

honeycomb network built with hexagons defined by the

superimposition of two regular opposite pentagons sharing a

diagonal as shown in the top right of Fig. 2(b): the lengths of

the segments 2–5 and 3–4 are in the ratio of the golden mean

� ¼ ð1þ 51=2Þ=2 and all vertices in blue in the structure of Fig.

2(b) can be labelled as linear integer sums of the five unit

vectors of the regular pentagon. Here again, we can choose the

natural Z-module of the regular pentagon and define the

atomic structure in five-dimensional space by the primitive

unit cell A ¼ ð0; 0; 1; 0; 1Þ and B ¼ ð0; 1; 0; 1; 0Þ with two

translation orbits w1 ¼ ð0; 0; 0; 0; 0Þ and w2 ¼ ð0; 0; 1; 1; 0Þ

(see Fig. 2). But because this tiling is made of hexagons that

can always be seen as convex envelopes of the two-dimen-

sional projection of cubes, the structure can also be viewed as

belonging to a Z-module of rank 3 (instead of 5) as seen in the

bottom right of Fig. 2. In that case, the three-dimensional unit

cell is now defined by A ¼ ð0; 1; 1Þ B ¼ ð1; 0; 1Þ with trans-

lation orbits w1 ¼ ð0; 0; 0Þ, w2 ¼ ð0; 0; 1Þ. The connection with
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Figure 2
Examples of Z-module models based on the module generated by the regular pentagon. (a) This structure (dark blue atoms) is a periodic ordered
decoration (group cm) of the well known Penrose tiling built with the two golden rhombi with acute angles of 2�=5 and �=5 drawn in light grey. It is a
substructure of the famous tiling originally drawn by Dürer (1525) built with two adjacent regular pentagons sharing an edge. (b) This honeycomb-like
network of atoms (in light blue) with group c2mm is a set of connected hexagons that are obtained by superimposing two opposite regular pentagons
sharing a diagonal as shown on the right of the figure. The structure is described using the five-dimensional module of the regular pentagon but this same
structure can also be viewed as the projection of a set of cubes, and thus be described by the three-dimensional projection of the cube.

2 This technique of using a five-dimensional hypercubic lattice instead of the
usual four-dimensional root lattice makes the pentagonal symmetry explicit
and all algebraic manipulations much easier; it is similar to using four indices
in the hexagonal crystalline system.

3 The translation orbit wi is the set of the equivalent points of !i generated by
the translations of Lk: Wi ¼ f!i þ �k; �k 2 Lkg irrespective of the point
symmetry of the structure.



the five-dimensional description is given by expressing the

basic three-dimensional unit vectors in terms of those of the

five-dimensional basis: x ¼ ð0; 1; 1; 0; 0Þ, y ¼ ð0; 0; 0; 1; 1Þ,

z ¼ ð0; 0; 1; 1; 0Þ. Choosing either Z3 or Z5 depends on which

defect is studied: a simple dislocation can be described using

Z
3 whereas a 5-f twin can be generated only on the basis of Z5.

This point will be exemplified later.

2.2. The cut method

Once the rank of the module has been determined, the next

step consists of generating the structure itself that is a long-

range-ordered set of points out of the Z-module. We use here

the well known cut-and-project method initially derived to

describe quasiperiodic structures (see Fig. 3). It consists of

projecting an N-D lattice � in a d-D subspace (d<N) in a

direction that is irrational with the N periods of �. Because

the projection �̂�k� is a dense set of points, an additional

criterion is used in the complementary subspace E? that

consists of selecting only those lattice points of � that project

in E? inside a given finite bounded (N � d)-D volume �? that

we designate as an atomic surface (AS). This generates a

uniformly discrete set of points =k that is a subset of the

Z-module =k:

Lk � =k ¼ f�̂�k�; � 2 � j�̂�?� 2 �?g:

2.3. The perpendicular shear method

To generate subsequently a periodic structure, we apply a

shear of the N-D lattice � along E? – thus keeping the original

module in Ek invariant – in order to align d chosen indepen-

dent nodes of � along Ek by the transformation (Gratias et al.,

1995; Quiquandon et al., 1999):

x0k ¼ xk
x0? ¼ x? �b""x?

�
:

This generates a d-D lattice Lk in Ek. Let Ai be the d vectors of

�, the projections of which in Ek define the unit cell of the

structure. To ensure the generated structure is periodic of

periods [Ai
k] the shear matrixb"" must be such that

Ai
? �b""Ai

k ¼ 0

and therefore

b"" ¼ ½A?�½Ak��1: ð1Þ

This technique of imposing a perpendicular shift of � is very

efficient: it allows one to generate infinitely many periodic

structures all based on the same Z-module.

2.4. The atomic surfaces

ASs are among the most important concepts in the

description of (perfect) quasicrystals since they define the

densities and relative locations of the atomic species of

the structure. A quasicrystalline structure is defined by

specifying for each chemical species the complete collection of

ASs (bounded polyhedra in the case of icosahedral phases)

and their relative locations in the N-D space. The real struc-

ture in Ek is thus generated by the cut algorithm. Depending

on where the cut is performed along E?, the structures

obtained differ from each other. If the projection of � is dense

everywhere in E?, these structures form a dense enumerable

set of locally isomorphic and physically indistinguishable

structures related to each other by phasons (local retilings)

that are analysed as local fluctuations of Ek in E?.

Deriving ASs for the case of periodic structures is the

unique conceptual difficulty in our present approach. Indeed,

because the final projection leads to a periodic structure in Ek,

the notion of AS loses a priori physical pertinence since the

projection of the N-D lattice in E? is now a lattice, say L?, i.e.

a discrete set of points instead of being a dense set as in the

quasicrystalline case. This obliterates the basic one-to-one

relation in quasicrystals between the projections of the nodes

of the N-D lattice � in Ek and those in E?. In the periodic

case, each projection in E? of a node of � is now associated

with an infinite set of sites in Ek, made of all the equivalent

positions deduced from each other by the lattice Lk of the

structure. These sets are the translation orbits that we intro-

duced in the preceding section. Translation orbits are the

objects that restore the one-to-one correspondence between

E? and Ek: to each lattice node in E? is associated one and

only one translation orbit in Ek and vice versa. This reduces

the physical significance of an arbitrary displacement of

the cut in E? to the only case where this displacement is a

translation of L?.

It is however very useful to keep the concept of ASs alive in

the case of periodic structures in order to possibly compare

the structural properties of both periodic and quasiperiodic

structures using the same cut-and-project method in a unified

way. In fact, for the periodic case, any AS is acceptable if it

satisfies the condition that, up to a global translation in Ek, the

atomic structure generated by the cut is unique and thus

independent of the choice of the trace of the cut in E?. This

means that the union of the projections in E? of identical ASs

forms a covering of E? such that no space is left (localizing the
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Figure 3
(a) Generating a uniformly discrete set out of a dense Z-module resulting
from a d-dimensional projection in Ek of an N-dimensional lattice �
consists of attaching to each N-D lattice node of � a (N � d)-D bounded
volume � parallel to E? designated here as an atomic surface (AS) and
collecting the intersection points of these ASs with Ek. (b) To generate a
periodic structure based on the same Z-module, a shear along E? is
applied that brings specific nodes of � parallel to Ek. These nodes define
the lattice Lk of the periodic structure in Ek.



cut there would give no structure at all) and no overlap

appears (there would be at least two different structures

generated depending on where the cut passes in E?, in an

overlap region or not). This set must therefore be a tiling of

E?. The simplest way to meet this requirement of using

identical cells that form a tiling of L? is to define the ASs in

E? as the union of the half-opened4 Voronoi cells centred at

the nodes of L? associated with the translation orbits of the

structure as illustrated in Fig. 4.

This definition is not only the most natural but it presents

the advantage of leading to the usual geometry of quasicrys-

tals when applied on a series of convergent approximant

structures as shown in Fig. 4(b). Here, each higher-order

periodic approximant of the octagonal phase is described by

an increasing number of translation orbits distributed on the

nodes of a denser lattice L? with smaller Voronoi cells. At

the infinite limit, the union of the half-opened Voronoi cells

superimposes on the standard canonical ASs used in the

standard tiling theory of quasicrystals.

The immediate consequence of the present definition of

ASs for periodic structures is that it obliterates the possible

existence of the so-called phasons typical of quasicrystals and

incommensurate phases: here, any crossing of the AS

boundaries in E? leads in Ek to either no change at all, or to a

global translation of the same structure. This can be particu-

larly well understood by examining the approximant struc-

tures of the octagonal tiling shown in Fig. 4(b): the empty sites

in the successive approximants are the positions of easy tile

flips, i.e. phason sites.

3. Generating module defects

Defining defects in solids requires one first to define what is

chosen as the reference for ideal perfect structures. Here, the

basic reference is the Z-module in Ek that is the projection

of the N-D lattice �. Thus the reference object is �, the

symmetry group G of which is the set of the isometries ĝg of the

N-D space that leave both � and Ek invariant, i.e. those

isometries ĝg that commute with the projector b��k:
G ¼ fĝg 2 G�j ĝgb��k ¼ b��kĝgg:

This group G is a supergroup of the group H of the actual

structure in Ek and the decomposition of G in cosets of H,

G ¼ [i ĝgiH;

defines all the possible defects of the real structure that leave

the Z-module invariant.

Because G has the lattice � in the N-D space as translation

subgroup whereas H has the lattice Lk in a d-D subspace, the

number of translational cosets is infinite5 and an additional

criterion – discussed later – is necessary to select those specific

translational boundaries that can plausibly exist between

adjacent variants in Ek.

The orientational defects, in contrast, are issued from the

coset decomposition of the point groups that lead to a finite

number of variants. These defects are twins that we can qualify

as merohedral in the sense of Friedel (1904, 1926, 1933) where

the notion of lattice is replaced by that of Z-module

(Quiquandon et al., 2016).

3.1. Explicit examples

Let us consider our two previous examples shown in Fig. 2.

They both are subsets of the Z-module generated by the

regular pentagon projection of a five-dimensional lattice in

the configurational five-dimensional Euclidean space that

decomposes according to

R5
¼ R2

kðxk; ykÞ � R2
?ðx?; y?Þ � R�ðz?Þ;

where R� is an overabundant dimension, the rational one-

dimensional line along the main diagonal ð1; 1; 1; 1; 1Þ.

Starting from a five-dimensional node ðn1; n2; n3; n4; n5Þ, we

obtain its components using the usual formulas (see, for

instance, Duneau & Katz, 1985):
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Figure 4
(a) Typical two-dimensional example of defining the ASs of a (periodic)
structure with two translational orbits w1 and w2 represented in E? with
projected lattice L?: the ASs are formed by the union of the two Voronoi
cells �1 and �2 (in grey) centred on each of the translation orbits. (b) The
union of the Voronoi cells (in light grey) of successive approximants of
the octagonal tiling compared with the usual ASs defined by the convex
envelopes (in blue) of the four-dimensional unit cell: as the order of the
approximant increases the union of the Voronoi cells tends towards the
canonical AS of the octagonal tiling.

4 The Voronoi cells form the canonical tiling associated with the lattice L?: in
the case where the cut passes at the boundary between two adjacent cells, a
decision must be taken to choose one of the two cells; because Voronoi cells
are always centred, we define the ASs as half-opened cells, i.e. that include a
boundary and exclude its opposite, like the segment ½a; b½ for the one-
dimensional case.

5 This corresponds to the fact that in Ek the lattice of the periodic structure
defines a discrete set of points whereas the Z-module defines a dense set of
points.



xk ¼
2
5

� �1=2
ðn1 þ n2 cos ’þ n3 cos 2’þ n4 cos 2’þ n5 cos ’Þ

yk ¼
2
5

� �1=2
ðn2 sin ’þ n3 sin 2’� n4 sin 2’� n5 sin ’Þ

x? ¼
2
5

� �1=2
ðn1 þ n2 cos 2’þ n3 cos ’þ n4 cos ’þ n5 cos 2’Þ

y? ¼
2
5

� �1=2
ðn2 sin 2’� n3 sin ’þ n4 sin ’� n5 sin 2’Þ

z? ¼
1

51=2 ðn1 þ n2 þ n3 þ n4 þ n5Þ

8>>>>>><
>>>>>>:
where ’ ¼ 2�=5. Introducing the golden mean � ¼
ð1þ 51=2Þ=2 and observing that

cos ’ ¼ ð� � 1Þ=2; sin ’ ¼ ð� þ 2Þ1=2=2; cos 2’ ¼ ��=2

and sin 2’ ¼ ð3� �Þ1=2=2 ¼ ð� � 1Þ sin ’

we can write these relations in a compact form:

xk ¼
1

101=2 ½2n1 þ ðh� h0Þ� � h�

yk ¼
3��
10

� �1=2
ðkþ k0�Þ

x? ¼
1

101=2 ½2n1 þ ðh
0 � hÞ� � h0�

y? ¼
3��
10

� �1=2
ðk0 � k�Þ

z? ¼
1

51=2 ðn1 þ hþ h0Þ

8>>>>><
>>>>>:

using the variables h ¼ n2 þ n5, h0 ¼ n3 þ n4, k ¼ n3 � n4,

k0 ¼ n2 � n5 similar to those introduced in the indexing

scheme of the icosahedral quasicrystalline phases (Cahn et al.,

1986). We note that hþ k0 and kþ h0 are even numbers and

the transformation from Ek to E? consists of applying the

following simple substitution rules: h$ h0 and k! k0,

�k k0.

The total symmetry group of the five-dimensional hyper-

cubic lattice has 255! ¼ 3840 elements but only the subgroup

G ¼ 10mm0 with 20 elements leaves Ek invariant. This point

group is generated by the rotation bCC10 of �=5 and the mirrorbmm0 as drawn in Fig. 5. An economical way of writing symmetry

operations is by using signed permutations. For example, the

mirror bmm0 defined in Fig. 5 tranforms e1 !�e1, e2 !�e5,

e3 !�e4, e4 !�e3, e5 !�e2 or in matrix form:

bmm0 ¼ f�1;�5;�4;�3;�2g ¼

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

0
BBBB@

1
CCCCA:

3.1.1. The bean structure. The primitive unit cell of

the bean structure is defined by the two five-dimensional

vectors A ¼ ð1; 1; 1; 1; 0Þ; B ¼ ð1; 0; 1; 1; 1Þ, both perpendi-

cular to R� with three translation orbits w1 ¼ ð0; 0; 0; 0; 0Þ,

w2 ¼ ð0; 1; 1; 0; 0Þ and w3 ¼ ð1; 0; 1; 0; 0Þ. The two-dimen-

sional lattice Lk is defined by

Lk ¼ fuAþ vB ¼ ðuþ v; u;�u� v;�u� v; vÞ; u; v 2 Zg

projecting in Ek as

xk ¼
1

21=2 ð� þ 1Þðuþ vÞ

yk ¼ ð
�þ2
10 Þ

1=2
ðu� vÞ

�
:

The shear matrixb"" reduces thus to a 2� 2 matrix connecting

R2
k with R2

?, the one-dimensional subspace � being invariant

under the shear. Using equation (1), we obtain after a few

algebraic calculations

b"" ¼ 3� � 5 0

0 � � 1

� �
leading to

x0? ¼ x? þ ð5� 3�Þxk ¼
2��
101=2 ð6n1 � 4hþ h0Þ

y0? ¼ y? þ ð1� �Þyk ¼ ð
3��

2 Þ
1=2

k

�
:

The projected lattice in E?, L? ¼ b��?�, is generated by

the three vectors A0 ¼ ð1; 0; 0; 1; 0Þ, B0 ¼ ð1; 0; 1; 0; 0Þ and

C0 ¼ ð0; 0; 1; 1; 0Þ:

L? ¼ fuA0 þ vB0 þ wC0

¼ ðuþ v; 0; v� w; uþ w; 0Þ; u; v;w 2 Zg:

3.1.2. The honeycomb structure. The unit cell of the

honeycomb structure is defined by the two five-dimensional

vectors A ¼ ð0; 0; 1; 0; 1Þ and B ¼ ð0; 1; 0; 1; 0Þ, both per-

pendicular to R� and with two translation orbits w1 ¼

ð0; 0; 0; 0; 0Þ and w2 ¼ ð0; 0; 1; 1; 0Þ. The two-dimensional

lattice Lk is defined by

Lk ¼ fuAþ vB ¼ ð0; v; u;�v;�uÞ; u; v 2 Zg

projecting in Ek as

xk ¼
1

21=2 ðv� uÞ

yk ¼ ð
3þ4�

10 Þ
1=2
ðuþ vÞ

�

and the shear matrix is

b"" ¼ �1 0

0 3� 2�

� �
leading to

x0? ¼ x? þ xk ¼
1

101=2 ½4n1 � ðhþ h0Þ�

y0? ¼ y? þ ð2� � 3Þyk ¼ ð
7�4�

2 Þ
1=2
ðk0 � kÞ

�
:
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Figure 5
Generating the point group 10mm0 requires two generators: the rotationbCC10 of angle �=5 and the mirror bmm0. This point group has 20 elements
corresponding to the symmetry of the regular decagon. It is the intrinsic
symmetry group of the five-dimensional lattice that keeps the physical
space Ek invariant.



The projected lattice in E?, L? ¼ b��?�, is generated by

the three vectors A0 ¼ ð1; 0; 0; 0; 0Þ, B0 ¼ ð0; 1; 0; 1; 0Þ and

C0 ¼ ð0; 0; 1; 0; 1Þ:

L? ¼ fuA0 þ vB0 þ wC0 ¼ ðu; v;w; v;wÞ; u; v;w 2 Zg:

3.2. Twins

Twin operations in the present context are orientational

defects between variants that share the same Z-module. In a

previous paper (Quiquandon et al., 2016), we proposed calling

them merohedral twins after Georges Friedel (Friedel, 1926)

by extending the role of the lattice to the Z-module.

An example of such merohedral twins in the honeycomb

structure is shown in Fig. 6(a). It is defined by the mirror

operationbhh that belongs to the symmetry group 10mm of �:bhh ¼ f2; 1; 5; 4; 3g associated with the translation ð0; 0; 1; 1; 0Þ.

This symmetry operation does not survive under projection on

Ek: it generates a coherent twin equivalent to a rotation by

2�=5 as illustrated in Fig. 6(c) where the coset decomposition

of 10mm0 on mm0 gives five variants. As required, all twin

individuals are built on the same module, thus justifying the

term of merohedral twins. Concerning the bean structure, the

coset decomposition of 10mm0 on m0 gives ten variants shown

in Fig. 6(b). Here, again, all ten variants share the same and

unique Z-module.

3.3. Translation defects

As previously mentioned, the translation defects are issued

from the coset decomposition of � onto Lk and are thus

infinitely many. For predicting which translation boundaries

are plausibly expected to occur, we need an additional

geometrical criterion. A reasonable choice is to search for a

maximum continuity between adjacent translational variants,

i.e. maximizing the overlap between the atomic orbits of

variants. This is easily achieved by considering the structure in

E?, i.e. a set of Voronoi cells attached to a finite collection of

nodes wi of the lattice L?, each wi corresponding to a trans-

lational orbit in Ek (see Fig. 7).

Our strategy is thus to choose those translations R? of L?
that superimpose a maximum number of Voronoi cells on top

of each other in order to generate adjacent variants sharing a

maximum number of translational orbits. For example, since

the honeycomb structure is defined with two translation orbits

w1 ¼ ð0; 0; 0; 0; 0Þ and w2 ¼ ð0; 0; 1; 1; 0Þ, the only translation

boundary we can expect that leaves one orbit invariant is

the boundary generated by the fault vector R ¼ w2 � w1 ¼

ð0; 0; 1; 1; 0Þ, as shown in Fig. 8(d).

The case of the bean structure is slightly more

complicated since it is generated by three Voronoi cells.

This offers then three possible fault vectors R1 ¼

w2 � w1 ¼ ð0; 1; 1; 0; 0Þ, R2 ¼ w3 � w1 ¼ ð1; 0; 1; 0; 0Þ and

R3 ¼ w3 � w2 ¼ ð1; 1; 0; 0; 0Þ, each leaving one translation

orbit invariant among the three of the structure as depicted in

Figs. 8(a), 8(b) and 8(c).

Another way of generating simple translation defects

consists of using fine slabs of twinned variants inside a main

crystal (microtwins). This is achieved by applying a twin

operation as discussed in the previous subsection, say ðhjtÞ,

and, subsequently, its inverse displaced by a lattice translation

R of �, ðĥh�1j � ĥh�1tþ RÞ, leading to

ðĥh�1
j � ĥh�1tþ RÞðĥhjtÞ ¼ ðĥh�1ĥhj � ĥh�1tþ Rþ ĥh�1tÞ ¼ ð1̂1jRÞ:
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Figure 6
(a) Coherent merohedral twin of the honeycomb structure: the twin
operationbhh ¼ f2; 1; 5; 4; 3g is a mirror with an irreducible translation part
t ¼ ð0; 0; 1; 1; 0Þ; it transforms the unit cell {A = ð0; 0; 1; 0; 1Þ, B =
ð0; 1; 0; 1; 0Þ} into fA0 = A; B0 =ð1; 0; 0; 1; 0Þg. This interface is perfectly
coherent with two rows of common atoms (drawn in purple) and is based
on the elementary rhombi of the Penrose tiling drawn in thin lines. (b), (c)
The twin variants generated by the decomposition of 10mm0 on (b) m0

(bean structure) with 10mm ¼ [9
i¼0
bCCi

10 m0 and on (c) mm0 (honeycomb
structure) with 10mm ¼ [4

i¼0
bCC2i

10 mm0. As can be clearly seen here, all
interfaces are perfectly coherent although there is no two-dimensional
coincidence lattice between any two adjacent twin individuals.



This is exemplified in Figs. 8(e) and 8(f). Successive intro-

ductions of n such elementary slabs generate global transla-

tions of nR between the two parts of the original crystal.

3.4. Module dislocations

The previous translation boundaries with fault vectors R

belonging to the Z-module can be bounded by partial dislo-

cations of Burgers vectors B ¼ R. These module dislocations

are defined as perfect dislocations of the lattice �, the Burgers

vectors of which have a non-zero component in E? after the

shearb"" as illustrated in Fig. 9:

B? �b""Bk 6¼ 0

as opposed to usual dislocations for which B? �b""Bk ¼ 0.

They are the natural extensions for the approximants of the

usual dislocations encountered in quasicrystals and corre-

spond to the so-called metadislocations first observed by Klein

et al. (1999); they were discussed by Klein & Feuerbacher

(2003) from the the pioneering work by Beraha et al. (1997)

and Klein et al. (1997) on the approximant structures �ð�0Þ-
AlPdMn. These defects have been extensively and magnifi-

cently studied using high-angle annular dark-field (HAADF)

electron microscopy by Feuerbacher and co-workers (see, for

instance, Heggen et al., 2008; Feuerbacher et al., 2008; Feuer-

bacher & Heggen, 2010). Recent analogous, superb observa-

tions have been made by Wang et al. (2016) on approximants

of the decagonal phase of the AlCuMn system. All these

observations testify to the fact that the observed defects are

indeed geometrically connected to an underlying tiling but

none offers a general framework able to properly define what
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Figure 8
The translation boundaries of the bean structure associated with (a)
R1 ¼ w2 � w1 ¼ ð0; 1; 1; 0; 0Þ, (b) R2 ¼ w3 � w1 ¼ ð1; 0; 1; 0; 0Þ, (c)
R3 ¼ w3 � w2 ¼ ð1; 1; 0; 0; 0Þ; in all three cases, one (in red) over the
three translation orbits is invariant on crossing the boundary. (d)
The unique translation boundary of the honeycomb structure
R ¼ w2 � w1 ¼ ð0; 0; 1; 1; 0Þ ¼ ð0; 2� �Þ. See Fig. 7 for the references
of the translation orbits in E?. (e)–(f) Example of the translation
R ¼ ð0; 1; 1; 0; 0Þ that can be achieved by introducing a microtwin: the
microtwin is realized by successive application of a twin operation and its
inverse displaced by R: on (e) it is a rotation h of �=10 followed by its
opposite ��=10 and on (f) it is a mirror applied twice.

Figure 7
(a) The bean structure represented in E? is generated by three Voronoi
cells located at w1 = ð0; 0; 0; 0; 0Þ, w2 = ð0; 1; 1; 0; 0Þ and w3 = ð1; 0; 1; 0; 0Þ;
there are thus three most plausible translation boundaries R1 ¼ w2 � w1,
R2 ¼ w3 � w1 and R3 ¼ w3 � w2. (b) The honeycomb structure repre-
sented in E? is generated by two Voronoi cells located at
w1 ¼ ð0; 0; 0; 0; 0Þ and w2 ¼ ð0; 0; 1; 1; 0Þ. Its most plausible translational
defect is thus the boundary characterized by R ¼ ð0; 0; 1; 1; 0Þ that leaves
one translational orbit invariant (see Fig. 8).



they really are. The connection to an N-D description has been

clearly demonstrated by Engel & Trebin (2006) on the basis

of the experimental observations of Feuerbacher and co-

workers. A first general attempt to define metadislocations in

the N-D framework has been proposed by Gratias et al.

(2013). Finally, in the present paper, we wish to definitely

emphasize the fundamental N-D character of these defects in

designating them by the accurate name of module dislocation

rather than metadislocation, which is not very informative.

These module dislocations differ from usual dislocations in

crystals in two basic ways:

(i) the Burgers vector B is a vector of � in N-D space so that

the Z-module is left invariant by the dislocation;

(ii) since the Burgers vector B has a non-zero component in

E? after shear, the dislocation is a partial dislocation bounded

by one or several stacking fault boundaries.

This is exemplified in Fig. 10 with a simple dislocation

B ¼ ð0; 0; 1; 1; 0Þ of the five-dimensional representation on

the left, or equivalently by B ¼ ð0; 0; 1Þ in the three-

dimensional representation on the right. This last repre-

sentation clearly shows the three-dimensional nature of the

dislocation and its associated stacking fault.

3.4.1. Scalar dislocations. There is a special situation that

arises when using an overdetermined Z-module, i.e. when E?

contains one or more rational directions of the lattice �. Such

is the case in our two previous examples based on the regular

pentagon described in five dimensions with the introduction of

the additional one-dimensional periodic subspace R�ðz?Þ in

E?.

There, particular dislocations may be found that have a non-

zero Burgers vector in � but that have a zero Bk component in

the physical space. Those strange dislocations have the

remarkable property of generating no defomation field and

thus of being insensitive to any stress fields and to any other

dislocations. This is easily understandable in terms of tilings in

which the topological fault introduced by the dislocation is

fully accommodated by a simple retiling of the elementary

protiles with no deformation. We therefore propose desig-

nating this special kind of topological defect as a scalar

dislocation since its main characteristic is the length of the

Burgers vector – a scalar property – and not the vector by

itself.

To exemplify this intriguing situation, we consider the two-

dimensional structure shown in Fig. 11 built with the four

vectors V1, V2, V3 and V4 such that V1 þ V2 þ V3 þ V4 ¼ 0.

The configurational four-dimensional Euclidean space

decomposes as

R4
¼ R2

kðxk; ykÞ � R2
?ðx?; y?Þ:

Using the coordinates of the four vectors in Ek,
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Figure 10
A typical Z-module dislocation dipole in the honeycomb structure that
illustrates the five-dimensional lattice � description with Burgers vector
B ¼ ð0; 0; 1; 1; 0Þ on the left and the three-dimensional lattice with
Burgers vector B ¼ ð0; 0; 1Þ on the right. Of course, both descriptions are
totally equivalent.

Figure 11
Scalar dislocation of Burgers vector B ¼ ð1; 1; 1; 1Þ in a tiling described
from a four-dimensional space with an overdetermined module where the
four basic vectors have their projections in Ek summing up to zero,
V1 þ V2 þ V3 þ V4 ¼ 0, as shown in (a). The periodic structure is seen in
(b); it has lattice parameters A ¼ ð1; 1; 0; 0Þ and B ¼ ð1; 1; 1; 1Þ and is
generated by six translation orbits.

Figure 9
A Z-module dislocation is the image in E? of a perfect dislocation of � in
N-D space, of Burgers vector B 2 � that has a non-zero component B0? in
E? after the shearb"".



V1 ¼
cos �

sin �

� �
; V2 ¼

cos�

� sin �

� �
; V3 ¼

�� cos	

�� sin 	

� �
;

V4 ¼
�� cos 	

� sin 	

� �
;

we note that V1 þ V2 þ V3 þ V4 ¼ 0 imposes cos � ¼ � cos	
and sin � ¼ � sin 	.

Let (n1; n2; n3; n4) be a node of the four-dimensional lattice

�, (xk; yk) and (x?; y?) its components in, respectively, Ek and

E?. Simple algebraic manipulations lead to the following

transformation rules normalized by the global scale factor

cos�:

xk
yk
x?
y?

0
BB@

1
CCA ¼

1 1 �1 �1

a �a �b b

b �b a �a

1 1 1 1

0
BB@

1
CCA

n1

n2

n3

n4

0
BB@

1
CCA

with

a ¼ tan�; b ¼ tan 	:

Thus, the basic parent quasiperiodic structure is one-

dimensional quasiperiodic along yk – according to the relative

values of the angles � and 	 – and periodic along xk with one-

dimensional unit-cell parameter B ¼ ð1; 1; 1; 1Þ. Correlatively,

the perpendicular projection is dense along the x? direction

and periodic along the y? direction with period � ¼
ð1; 1; 1; 1Þ:

R4
¼ Rkð1; 1; 1; 1Þ � RkðykÞ � R?ðx?Þ � R?ð1; 1; 1; 1Þ:

To obtain the actual periodic structure with a two-dimensional

unit cell defined by A ¼ ð1; 1; 0; 0Þ and B ¼ ð1; 1; 1; 1Þ we

apply a shear along x? proportional to yk, thus reducing the "̂"
matrix to a simple number:

"̂" ¼ b=a ¼ tan	= tan �;

leading to

x0? ¼ x? � yk b=a ¼ ðn3 � n4Þða
2 þ b2Þ=a

y0? ¼ y? ¼ n1 þ n2 þ n3 þ n4:

�

The structure is defined by six translation orbits shown in

Fig. 11(b), w1 ¼ ð0; 0; 0; 0Þ, w2 ¼ ð0; 1; 0; 0Þ, w3 ¼ ð0; 0; 1; 0Þ,

w4 ¼ ð0; 1; 1; 0Þ w5 ¼ ð0; 0; 1; 1Þ and w6 ¼ ð0; 1; 1; 1Þ with the

lattice

Lk ¼ uAþ vB ¼ ðuþ v; v� u;�v;�vÞ; u; v;2 Z:

Introducing the dislocation of Burgers vector B ¼ ð1; 1; 1; 1Þ

that has a zero component in Ek leads to a point defect shown

in red in Fig. 12 that is bounded by four lines of translation

faults. Because the dislocation induces no deformation, the

four fault vectors Ri are defined up to any translation of the

lattice as depicted in Fig. 12, the global geometrical consis-

tency being

R1 þ R2 þ R3 þ R4

¼ ð1þ uþ v; 1þ v� u; 1� v; 1� vÞ; u; v 2 Z:

A simple solution proposed in Fig. 12, heavy dark red arrows,

is to choose R1 ¼ R2 ¼ R3 ¼ R4 ¼ ð1; 0; 0; 0Þ leading to u ¼ 2

and v ¼ 1 in the previous expression. This shows that each

boundary is associated to move the six Voronoi cells along the

projection of the ð1; 0; 0; 0Þ direction, that is 1=4 in length of

the ð1; 1; 1; 1Þ direction. This move keeps four of six invariant

Voronoi cells and therefore four translation orbits are invar-

iant out of the six forming the structure on each crossing of

the translation boundaries (see Fig. 12). This makes these

boundaries remarkably coherent: all are made of a local

coherent redistribution of the original tiles with no additional

new external shapes.
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Figure 12
(a) The structure of Fig. 7(b) projected in E? is defined by the atomic
surface union of the six Voronoi cells in grey located at the projections in
E? of the six translation orbits. (b) The Burgers vector B ¼ ð1; 1; 1; 1Þ is
contained in E? and thus generates no deformation of the tiles, whatever
their location in the physical space as shown here. The defect (in red) is at
the intersection of four translation boundaries, each conserving four
among the six of the orbits forming the structure.



4. Conclusion

We have seen that those alloys for which the atoms are long-

range ordered on a non-trivial Z-module, in addition to being

periodically spaced, can contain new original defects corre-

sponding to internal symmetry operations of the Z-module

that are lost because of the periodicity. These defects are twins,

translation defects and dislocations that we call module

dislocations to differentiate them from standard lattice dislo-

cations, and appear as partial dislocations bounded by one of

several translation faults. We have seen that for the case of

overdetermined modules specific dislocations can exist with

Burgers vectors having a zero component in the physical

space. These dislocations, which we call scalar dislocations, are

located at the intersection of translation defects and are well

described by a collection of local retilings with no deformation

of the prototiles.
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