Structure-function analysis of the neutron crystallographic structure of Inorganic Pyrophosphatase determined from microgravity-grown crystals

Inorganic Pyrophosphatase (IPPase) from *Thermococcus thioreducens* catalyzes the hydrolysis of inorganic pyrophosphate (PP_i) to form orthophosphate (P_i). The action of this enzyme shifts the overall equilibrium in favor of synthesis during a number of ATP-dependent cellular processes such as in the polymerization of nucleic acids, production of coenzymes and proteins and sulfate assimilation pathways. IPPase was crystallized by counter-diffusion crystallization in the Granada Crystallization Facility (GCF) as a Center for the Advancement of Science in Space (CASIS) payload on board the International Space Station (ISS). The protein was allowed to crystallize for 6 months, the longest duration of time for any protein crystal growth experiment using the counter-diffusion technique. To-date, the largest IPPase crystals were obtained in the experiments performed on board the ISS. Crystals with the largest volume ($> 6 \text{mm}^3$) were subjected to neutron diffraction studies using the Macromolecular Neutron Diffractometer (MaNDi line) at Oakridge National laboratories. The neutron crystallographic structure was determined to 2.3Å with final R_{free} and R_{work} to be 23.8 % and 25.2 % respectively. We report here the structurefunction analysis of IPPase as revealed by the neutron crystallographic structure coupled to previously determined X-ray crystallographic structures, including that of the holo Thermococcus thioreducens IPPase. The structural comparisons between the apo IPPase (neutron) and holo (Xray) structures revealed different side chain conformations at the active site resulting from hydrogen alterations from proximal water molecules and magnesium coordination.

Noriko Inoguchi	USA	University of Alabama in Huntsville
Leighton Coates	USA	Oak Ridge National Laboratory
Flora Meilleur	USA	Oak Ridge National Laboratory
Michelle Morris	USA	University of Alabama in Huntsville
Anuj Singhal	USA	iXpressGenes Inc., Hudson Alpha Institute for Biotechnology
Jorge Barcena	USA	University of Alabama in Huntsville
Juan Garcia-Ruiz	Spain	Universidad de Granada
Marc Pusey	USA	iXpressGenes Inc., Hudson Alpha Institute for Biotechnology
Joseph Ng	USA	University of Alabama in Huntsville