Towards establishing the structure of liquid molecular transitions metal oxides through a joint experimental and computational investigation

Paul M. Forster^{1,2,3}, Keith V. Lawler, ^{1,3} Bradley Childs, ² Daniel Mast, ^{1,2,3} Frederic Poineau^{1,3}, Alfred P. Sattelberger⁴, Kenneth R. Czerwinski^{1,2}

¹Department of Chemistry and Biochemistry, University of Nevada Las Vegas, Las Vegas, NV 89154, USA

²Radiochemistry Program, University of Nevada Las Vegas, Las Vegas, NV 89154, USA

³High Pressure Science and Engineering Center, University of Nevada Las Vegas, Las Vegas, NV 89154, USA

⁴Energy Engineering and Systems Analysis Directorate, Argonne National Laboratory, Argonne, IL 60439, USA

Molecular metal oxides stable under ambient conditions are exceptional in metal oxide chemistry. One of the best-known examples occurs for group 7 where M₂O₇ molecules exist for Mn, Tc, and Re. In the case of Tc, reactions of Tc₂O₇ and related species have been well-known to result in a red substance informally known as "technetium red" that has defied characterization efforts to date. We present a reexamination of the M₂O₇ class of molecular metal oxides from a joint computational and experimental approach. The M₂O₇ molecules offer some unusual chemistry, including three-center covalent bonding, negative thermal bond expansion, and (in the case of Re) a structure that is partially molecular and partially extended. Insights from our work on this family have led us to propose a likely model for "technetium red" based on an extensive computational investigation. Our model, which matches experiment closely, consists of a monomer with coordinatively unsaturated Tc sites which form strong and extensive interactions with adjacent molecules, predominantly involving Tc-Tc bonds, leading to a complex fluid.