Structure and electrical conductivity relationship as a function of pressure

The relationship between electrical properties and the structure of $[Mo_{18}As_2O_{62}]^{4-}$ clusters is explored. Piperazinium cations sit between the clusters for charge neutrality. The structure crystallizes in the space group *F*ddd, and each ellipsoidal cluster is built from 18 Mo^{VI}O₆ octahedra. Two As^VO₄ tetrahedral units sit within the cluster and are corner sharing with four MO₆ octahedra. Two partially occupied trigonal pyramidal As^{III}O₃ units are on the surface of the cluster. At ambient pressure, the closest distance between clusters is ~ 2.9 Å. Variable temperature electrical conductivity measurements indicate activated behavior, and the short distance between clusters is postulated as a potential pathway for charge hopping. The clusters behave as ridge objects, and this is borne out when the material is compressed under hydrostatic conditions to 4.2 GPa. The material exhibits a reversible phase transition from *F*ddd to *C2/m* symmetry at ~0.8 GPa, with a concomitant decrease in the shortest distance between clusters. We correlate the structural change as a function of pressure with the electrical conductivity as a function of pressure.

We acknowledge partial support from NSF DMR-1206338, NSF EAR-1118691, DOE DE-AC02- 05CH11231, and NSF EAR 1606856.

Victoria Soghomonian
Benjamin MedinaVirginia Tech, Physics
Virginia Tech, Mechanical Engineering
Virginia Tech, GeosciencesElinor Spencer
Christine Beavers
Nancy RossVirginia Tech, Geosciences
Advanced Light Source Lawrence Berkeley National Lab
Virginia Tech, Geosciences
Virginia Tech, Geosciences
Virginia Tech, Chemistry