The most common approach to treating a bacterial infection is the use of β -lactam antibiotics. However, antibiotic resistance has become a challenge in the clinical setting. The primary mechanism of bacterial resistance is the destruction of the β -lactam ring via hydrolysis of the cyclic amide by β -lactamase enzymes. To combat this hydrolysis mechanism, inhibitors (such as clavulanic acid, tazobactam, and sulbactam) have been developed to inhibit the β -lactamase and allow β -lactam antibiotics to continue to be useful. Class D β -lactamases – such as OXA-24 – are known to hydrolyze the last-resort carbapenem antibiotics and are not inhibited by current clinical inhibitors, creating a need to discover an inhibitor for this class of enzymes. Boronic acids are novel compounds that lack the classic β -lactam ring, and they have been known to inhibit class A and C β -lactamases. Ten boronic acid compounds were tested for inhibition of OXA-24, resulting in K_i values ranging from 23 to 1500 μ M. Crystal structures of OXA-24 in complex with boronic acids were obtained, which will aid in studying the structural relationship of these inhibitors in the active site. Boronic acids show a promising future for the inhibition of class D β -lactamases.

Rachel Springsdorf	Grand Valley State University
Diane Mutete	Grand Valley State University
Alina Morales	Grand Valley State University
Josephine Werner	Grand Valley State University
Joshua Mitchell	Grand Valley State University
Rachel Powers	Grand Valley State University