The hydrogen bond occurred between the Tetrakis (4-aminopyridine-κN1) di chloride copper (II) monohydrate and Human Serine Racemase and Sphingosine 1-phosphate (S1P) lyase identified using molecular docking tool (Auto dock tools) to understand the drug-drug interaction. Based on the crystallographic structure of Tetrakis (4-aminopyridine-κN1) di chloride copper (II) monohydrate with enzyme and protein obtained using Auto dock tools and analysis through Hirshfeld surface show that the Hydrogen bonding interaction is restricted by N-H...O hydrogen bonding and both the molecular structure show the hydrophilic interactions. Docked structure of S1P and HSR with ligand closely contact protein interactions of N....O and N-H...O hydrogen bonding shows on the complex function of hirshfield surface in molecular geometry. It shapes relies on the interactions between Macromolecule of protein-ligand as well as atoms using crystal explorer The human serine racemase and the ligand interact through N(4-aminopyridine)-H...O(Serine) and N(4-aminopyridine)-H...O(Asparagine) hydrogen bonding with bond distance 2.05Å and 2.07Å respectively and the estimated Free Energy of Binding is -5.81 kcal/mol and estimated Inhibition Constant, K_i is 54.66 μM (micro molar) [Temperature = 298.15 K]. The Sphingosine 1-phosphate (S1P) lyase and the ligand interact through N(4-aminopyridine)-H...O(Aspartagine) and N(4-aminopyridine)-H...O(Valine) hydrogen bonding with bond distance 1.97Å and 1.91Å respectively and the estimated Free Energy of Binding is -5.32 kcal/mol and estimated Inhibition Constant, K_i is 126.74μM (micromolar) [Temperature = 298.15 K]. The antibiotic sensitivity study of Tetrakis (4-aminopyridine-κN1) di chloride copper (II) monohydrate with the micro-organisms like Escherichia coli and Streptomyces show that it has less antibiotic sensitivity with these microorganisms. These studies identify the possibilities of Tetrakis (4-aminopyridine-κN1) di chloride copper (II) monohydrate to act as drug with required changes in its molecular structure. These analysis are recently application of inhibitory action of therapeutic target for treatment of Multiple Sclerosis(MS). 4-Aminopyridine metal complex increase neurological effects in pottasium(K+) channel blockade. In the field of antineoplastic drug development the transition metals are dynamic in electron affinity, reactivity and geometry. For the drug chemist the usage of transition metals act as an effective tool to develop and study molecules - drug interactions.

Keywords: Hydrogen bond, protein-ligand interaction, Hirshfeld surface