Phase behavior of 3,4,5-tris(alkyloxy)benzenesulfonates with a tetramethylammonium cation

Stupnikov Alexei Alexandrovich¹, Malakhova Yulia Nikolaevna¹, Bakirov Artem Vadimovich¹, Shcherbina Maxim Anatolievich¹, Chvalun Sergei Nikolaevich¹
¹NRC «Kurchatov Institute», Moscow, Russian Federation
E-mail: alexei.stupnikov@mail.ru

Biomimetic selfassembling systems based on synthetic liquid crystals is a promising field of supramolecular chemistry because it helps to determine and understand the principles of creating supramolecular structures of preferred arrangement [1]. A recently developed class of “cunitic” selforganising monodendrones based on 3,4,5-tris(alkyloxy)benzenesulfonic acid attracts great attention because of its rich phase behavior [2]. In this work the dependence of phase behavior of 3,4,5-tris(alkyloxy)benzenesulfonates with a tetramethylammonium ion in the focal group on varying the length of the alkyl chain is determined during selforganisation in bulk.

Phase behavior of 3,4,5-tris(alkyloxy)benzenesulfonates was studied by the methods of differential scanning calorimetry, polarizing optical microscopy, small and wide angle X-ray scattering. It was found that 3,4,5-tris(alkyloxy)benzenesulfonates form a variety of phases such as smectic layers, ordered and disordered two-dimensional columnar mesophases, cubic mesophases of the plastic crystal type.


Keywords: selforganisation, thermotropic liquid crystals, benzenesulfonates