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More than 35 years and 11 000 publications after the discovery of quasicrystals

by Dan Shechtman, quite a bit is known about their occurrence, formation,

stability, structures and physical properties. It has also been discovered that

quasiperiodic self-assembly is not restricted to intermetallics, but can take place

in systems on the meso- and macroscales. However, there are some blank areas,

even in the centre of the big picture. For instance, it has still not been fully

clarified whether quasicrystals are just entropy-stabilized high-temperature

phases or whether they can be thermodynamically stable at 0 K as well. More

studies are needed for developing a generally accepted model of quasicrystal

growth. The state of the art of quasicrystal research is briefly reviewed and the

main as-yet unanswered questions are addressed, as well as the experimental

limitations to finding answers to them. The focus of this discussion is on

quasicrystal structure analysis as well as on quasicrystal stability and growth

mechanisms.

1. Introduction

Dan Shechtman was the first to identify a rapidly solidified

intermetallic phase as a representative of a novel class of long-

range-ordered (LRO) phases with icosahedral diffraction

symmetry (Shechtman et al., 1984). The term ‘quasicrystal’ for

such intermetallics was coined by Dov Levine and Paul J.

Steinhardt in an article published only a few weeks after

Shechtman’s seminal paper (Levine & Steinhardt, 1984). This

term refers to the class of ‘quasiperiodic functions’, which

were introduced as such by the mathematician Harald Bohr

(Bohr, 1924, 1925, and references therein). Amazingly,

quasicrystals (QCs) were prepared in the course of studies of

intermetallic phase diagrams unknowingly, long before

Shechtman’s discovery (see, e.g., Hardy & Silcock, 1956;

Palenzona, 1971). Since, in most cases, only X-ray powder-

diffraction methods were routinely used for sample char-

acterization at that time, the fivefold diffraction symmetry

characteristic of icosahedral QCs did not immediately catch

the eye, unlike Shechtman’s electron diffraction patterns.

Furthermore, it seems that nature created QCs aeons earlier.

According to findings in meteorites, QCs may have been

formed billions of years ago (see Bindi et al., 2009, 2016, and

references therein).

What is the state of the art of quasicrystal research more

than 35 years and 11 000 publications (see Fig. 1) after Dan

Shechtman’s discovery? We know the structures of several

decagonal and icosahedral QCs (DQCs and IQCs, respec-

tively) almost as well as it is possible to know them and as well

as we need to know them. The same is true for their physical

properties, which do not differ significantly from those of high-

order approximant crystals (ACs). ACs are built from the
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same structural subunits, frequently called ‘clusters’ (see also

Steurer, 2006a; Henley et al., 2006; Jung & Steurer, 2011), but

in a periodic way. In contrast, we do not know enough about

the thermodynamic stability of QCs, and the way they form

and grow from the melt. These are the main unanswered

questions from my point of view.

Why is it worth investing more time and money in the

pursuit of answers to these questions? What is so interesting

about QCs that would justify the more than three decades of

invested research and the resulting 11 000 publications so far,

when potential applications seem to be quite limited (see, e.g.,

Dubois, 2012, and references therein)? Well, it is simply the

quasiperiodic structural LRO, which is fundamentally

different to periodic order, which was long believed to be the

only possible state for single-phase crystalline materials in

thermodynamic equilibrium. The other two classes of aper-

iodic crystals, incommensurately modulated structures (IMSs)

and composite or host–guest structures (CSs), which have

been known for longer, are not as far away from average

periodicity as QCs (see Steurer & Haibach, 1999; Deloudi &

Steurer, 2012; Janssen et al., 2007; and references therein). In

contrast to QCs, IMSs and CSs can be considered as much

better understood minor modifications or intergrowths of

periodic structures.

In the following, the fundamental unanswered questions of

quasicrystal research will be addressed with the focus on

structure, stability and growth of intermetallic QCs. For

reviews on these topics see, e.g., the special issue on QCs of the

Royal Society of Chemistry (2012). Finally, I want to empha-

size that this topical review reflects just my personal view on

the past, present and future of quasicrystal research.

2. Occurrence of quasicrystals

QCs are binary or ternary intermetallic compounds, in many

cases accompanied by low-order ACs with slightly different

chemical compositions. So far, there is no known case of a

quasicrystal transforming to an approximant crystal with

exactly the same chemical composition, either as a function of

temperature or with increasing pressure. Up to now, only QCs

with icosahedral, pentagonal or decagonal symmetry have

been found to be thermodynamically stable [Fig. 2; compare

also Figs. 5.24 and 5.33 in Steurer & Dshemuchadse (2016)].

One hypothesis explaining the prevalence of fivefold

symmetry in intermetallic QCs is based on cluster symmetry

and packing possibilities. For instance, structural subunits with

eight-, nine- or 12-fold rotational symmetry could be easily

accommodated and packed in tetragonal, trigonal and hexa-

gonal crystal structures, respectively. There is no need for

potentially more efficient quasiperiodic packings that might be

obtained by sacrificing the advantages of periodicity (phonons

and Bloch waves are periodic). Indeed, there are only two

dodecagonal QCs known so far. One, the telluride (Ta,V)1.6Te,

is of rather poor quality and probably metastable (Krumeich

et al., 2012, and references therein). The other is a Mn-rich

quaternary alloy, Mn72.0�xCr5.5+xNi5.0Si17.5 with x = 0 or 2.0,

which seems to be more stable, but is also of low crystal quality

(Iwami & Ishimasa, 2015). Sevenfold symmetry is very rare in

intermetallic compounds but frequently found in some

borides, which can be seen as ACs (Steurer, 2007; Orsini-

Rosenberg & Steurer, 2011). However, no quasicrystal with

sevenfold symmetry has been found so far. Potential QCs with

11-, 13- or 15-fold rotational symmetry could be energetically

unfavourable for steric reasons. Indeed, structural subunits

with such or higher symmetries are not currently known in

intermetallics. Furthermore, quasiperiodic structures with

these symmetries would have significantly lower degrees of

average periodicity. This means that their atomic sites would

show large deviations from their (in these cases badly defined)

periodic average structures (Deloudi & Steurer, 2012), which

can be of importance for the propagation of phonons and the

formation of Bloch waves for electrons.

Self-assembly is quite different and much better understood

in the case of mesoscopic and macroscopic quasiperiodic

arrangements. Instead of chemical bonding, electrons and

phonons, specific pair potentials, three-body interactions and

the shape entropy play the decisive role there. In contrast to
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Figure 1
The number of articles on QCs in the years following the seminal
publication by Shechtman et al. (1984). In some years the numbers peak
owing to the publication of proceedings of international conferences on
quasicrystals (ICQs) that took place in the year before. The general trend
of the publication rate shows a decrease since the year 2000. This reflects
the decreasing interest in, and funding for, QC research because of the
lack of important applications.



intermetallic QCs, 12-fold symmetry is the prevailing one in

these cases (van Anders et al., 2014; Barkan et al., 2014; and

references therein). Eighteen-fold symmetry has also been

found for a specific experimental setup (Fischer et al., 2011).

2.1. Open questions and challenges

(i) What are the conditions (chemical composition, stoi-

chiometry, valence electron concentration, temperature etc.)

for the formation of stable QCs in intermetallic systems?

(ii) Can stable QCs with symmetries other than five-, eight-,

ten- and 12-fold symmetries exist in intermetallics or in other

chemical compounds?

(iii) We know that stable binary and ternary QCs exist. Do

true quaternary and higher multinary QCs exist? Are unary

QCs possible under extreme pressure (for instance, as quasi-

binary electrides)?

(iv) Our goal is to predict the existence and stability of (all)

possible QCs and their ACs based on our insight into their

formation principles. There will be similar challenges and

limitations for quasicrystal prediction as for the prediction of

other complex intermetallics in general. One severe compli-

cation for quantum-mechanical calculations will be the

missing periodic boundary conditions.

3. Stability of quasicrystals and approximants

There has been a long discussion, which is still ongoing, about

whether QCs are ‘energy- or entropy-stabilized’. In other

words, whether quasiperiodic structural order can be a ground

state of condensed matter (thermodynamically stable at 0 K)

or has to be stabilized by entropic contributions from phonons,

phasons and structural disorder. In the case of entropic

stabilization, QCs would be high-temperature (HT) phases,

only stable above a specific threshold temperature. In the

early days of quasicrystal research, many QCs were discovered

based on the working hypothesis of electronic stabilization by

the Hume–Rothery mechanism (for a review see Tsai, 2003).

Indeed, in several cases a pseudogap has been identified at the

Fermi energy, originating either from Fermi-surface/pseudo-

Brillouin zone nesting or from the hybridization between d

and p states (see Lin & Corbett, 2007; Tamura et al., 2004;

Suchodolskis et al., 2003; Mizutani, 2016; and references

therein). The role of entropic contributions to the stabilization
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Figure 2
Concentration triangles showing the approximate compositional stability ranges of most DQCs (top) and IQCs (bottom). Each of the elements listed in
parentheses can be a constituent of a specific QC. For instance, Cd–(Ca,Yb) represents only the QCs in the binary systems Cd–Ca and Cd–Yb. RE means
rare-earth elements. Extended compositional stability ranges reflect the existence of intrinsic substitutional disorder. Most QCs, however, have narrow
compositional stability ranges, i.e. they are line compounds.



of QCs, in particular that of the phason modes, is still an

ongoing matter of debate (de Boissieu, 2006, and references

therein). Unfortunately, the mechanism for the stabilization of

mesoscopic and macroscopic quasiperiodic arrangements

cannot be directly transferred to intermetallic QCs because of

the different interaction mechanisms.

At present, several experimental findings support possibi-

lity of a quasiperiodic ground state: (i) electronic stabilization

via pseudogap formation at the Fermi energy; (ii) the high

structural perfection of some QCs; (iii) the existence of peri-

odic ACs.

What does the existence of periodic ACs have to do with a

potential quasiperiodic ground state? Because of the need for

periodic boundary conditions, quantum-mechanical (density

functional theory, DFT) calculations are only possible on

approximant crystal (AC) structures at present [for recent

calculations see, e.g., Mihalkovič et al. (2014) and references

therein]. They do not show any structural instability at 0 K. By

changing the chemical composition in smaller and smaller

steps, one could go from low- to higher-order ACs and then,

finally, to the quasicrystal (QC). This could support the

hypothesis of QCs as a ground state of matter. Interestingly

enough, at most only one or two stable low-order ACs have

been experimentally observed in intermetallic systems

featuring QCs so far. However, no devil’s staircase of ACs to a

particular QC has been identified, as is known for IMSs (Bak,

1982, and references therein). This can be interpreted in such a

way that once the chemical composition approximates that

needed for the formation of a pseudogap at EF, the close-to-

spherical pseudo-Brillouin zone of an IQC lowers the energy

more than the less-symmetric cubic Brillouin zone of even a

high-order AC. This would favour QC formation. Conse-

quently, almost perfect QCs such as i-Cd–Yb or i-Zn–Mg–Sc

may be stable at 0 K, while Al-based QCs with strong phasonic

and chemical disorder may instead be HT phases.

3.1. Quasiperiodicity versus periodicity

Why are almost all known crystal structures periodic and

only a few quasiperiodic? In most cases, periodicity is the most

efficient way of packing structural subunits (atoms, molecules,

complex ions, clusters etc.) under the constraints of chemical

bonding and structural dynamics. Phonons and Bloch waves

are periodic as well. In contrast to amorphous structures, the

Patterson (autocorrelation) function as well as the Fourier

spectrum is discrete in both the periodic and quasiperiodic

cases. This means that only an energetically favourable

discrete set of interatomic distances exists. Furthermore, it has

been shown that not only IMSs but also QCs have a kind of

periodic average structure (Steurer & Haibach, 1999; Deloudi

& Steurer, 2012).

The coexistence of both ACs and QCs in intermetallic

systems proves that the common structural subunits (clusters)

can principally arrange themselves equally well periodically

and quasiperiodically, respectively. The decisive factor in the

formation of one or the other is just a specific stoichiometry

and, as a consequence, a valence-electron concentration

favouring one or the other.

Structurally, a significant difference between ACs and QCs

lies in the compatibility of clusters with non-crystallographic

symmetry with the orientation of the flat atomic quasilattice

layers [see, for instance, Fig. 9.9 in Steurer & Dshemuchadse

(2016)]. The energetically favourable flat atomic layers can be

seen as interfaces within complex structures; they also are the

terminating layers forming the facets of crystals and quasi-

crystals.

3.2. Open questions and challenges

(i) Can QCs be thermodynamically stable at 0 K? An

experimental limitation for studying the low-temperature (LT)

stability of QCs lies in the fact that the diffusion necessary for

a transformation of quasiperiodic structures into periodic ones

would be too sluggish at low temperatures.

(ii) For studying quasicrystal stability theoretically, one

could perform first-principles calculations on a series of higher

and higher ACs, 0/1, 1/1, 2/1, 3/2, . . . , n/m (where m and n are

sequential Fibonacci numbers) (see, e.g., Krajčı́ & Hafner,

2005). The results could explain why only low-order ACs have

been found experimentally so far. The calculations should also

allow one to extrapolate the findings to the stability of the

corresponding QC (see also Steurer, 2012, and references

therein).

4. Structure of quasicrystals

Why are we interested in the analysis of crystal structures at

all? At present, the main structural databases contain more

than 1 200 000 entries for periodic crystal structures [>188 000

inorganics/intermetallics in the Inorganic Crystal Structure

Database (ICSD); >875 000 organics/metalorganics in the

Cambridge Structural Database (CSD); >107 000 proteins in

the RCSB Protein Data Bank (PDB)] and 145 of incom-

mensurate structures in the Bilbao Incommensurate Struc-

tures Database (B-IncStrDB). The number of quantitatively

determined QC structures is much smaller (’20) than the

number of known stable QCs (’50), but this number includes

representatives of all QC structure types known to date

(Steurer & Deloudi, 2009, and references therein). For

examples of state-of-the-art n-dimensional (nD) structure

analyses of IQCs and DQCs see, for instance, Takakura et al.

(2007) and Logvinovich et al. (2014), respectively; for tiling-

based analyses of DQCs at ambient and high temperatures see

Kuczera et al. (2012) and (2014), respectively.

What is the added value of a (sometimes quite tedious)

structure analysis of a QC? In most cases, it just adds to our

understanding of the chemical-composition/crystal-structure

relationship (see, e.g., Steurer & Dshemuchadse, 2016). In

only a few selected cases where physical properties have been

studied as well does it improve our understanding of the

chemical-composition/crystal-structure/physical-properties

relationships. This information brings us closer towards one of

the ultimate goals of materials design: from the desired
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physical/chemical properties of a material, find its chemical

composition and the protocol for preparing it. In the case of

QCs most of our goals are at present more basic: first, we want

to understand the governing factors for the evolution of

quasiperiodic order for a chemical compound of a given

composition; in other words, the reason why a structure

becomes quasiperiodic (see, e.g., Steurer, 2004, 2012). Here it

should be mentioned that the structural perfection of QCs can

be comparable with that of periodic complex intermetallics

in general. Consequently, dynamical-diffraction phenomena

such as multiple diffraction are quite common; anomalous

transmission effects have also been observed (see, e.g., Kycia et

al., 1993). This indicates a high perfection of at least the

quasiperiodic average structure, without saying anything

about the possible deviations from it.

QC structure analysis is still far from being a straightfor-

ward task, although the higher-dimensional (nD) approach

provides a powerful tool. It should be borne in mind that for a

single specific QC structure in the nD description, there exists

an infinite number of slightly different, but locally isomor-

phous, realizations in three-dimensional physical space. This

means that the structures of actual quasicrystallites, taken

from a larger single-crystalline QC, may not be congruent to

each other, but all of them could be related to one and the

same idealized nD structure model. In other words, we do not

know a priori which of the infinitely many three-dimensional

realizations of an nD structure model applies to a specific QC

with known nD structure. However, we do not need to know

this in order to understand the structural building principles

and physical properties. If one needs to know more about the

actual local structure of a QC, electron microscopy would be

the method of choice.

4.1. Diffraction

The characteristics (and definition) of all ideal crystals, be

they periodic or aperiodic, is their pure-point Fourier spec-

trum M�F ¼ fFðHÞg, with FðHÞ the structure factor (Fourier

coefficient) for the diffraction vector H. This means for a

diffraction experiment on a d-dimensional (dD) crystal that all

its Bragg reflections have to correspond to � peaks (within the

experimental resolution) supported on a Z module (an addi-

tive Abelian group)

M� ¼
Xn

i¼1

fhia
�
i jhi 2 Zg ð1Þ

of rank n (n� d) with reciprocal-basis vectors a�i ; i ¼ 1; . . . ; n.

In the nD approach, n determines the dimension of the

embedding space and d that of the actual (a)periodic crystal

(usually d = 3) in physical space, which is also called parallel

space (par-space), V jj. In practice, our first assumption is

usually that our experimentally measured reflection intensities

conform to Bragg reflections. This automatically implies

periodicity of the nD structure model to be derived and

applicability of the nD approach. This implication is not

critical for three-dimensional on-average periodic structures,

because any deviation from periodicity could be easily

detected by imaging methods such as electron microscopy, for

instance. In the case of on-average non-periodic structures,

however, it would be more difficult to identify the kind of

average LRO and the actual deviations from it.

Once the experimental data are accepted as Bragg reflec-

tions, the symmetry and metrics of the nD lattice can be

determined in a straightforward way. For n = 3, this already

determines the LRO of a structure (Bravais lattice). In

contrast, for n > 3, the LRO of the three-dimensional quasi-

periodic structure not only depends on the nD Bravais lattice

type but also on the content of the nD unit cell, i.e. on the

location, shape, partition and size of the nD hyperatoms. An

nD hyperatom has a three-dimensional par-space component,

which gives the atom in its usual three-dimensional descrip-

tion when intersected with the physical space. In the (n � 3)D

perpendicular space (perp-space), V?, it is represented by an

extended polyhedral distribution function called an occupa-

tion domain or atomic surface. This means that the kind of

LRO of a quasiperiodic structure is not only coded in the nD

Bravais lattice type but also in the position, size and shape of

the atomic surfaces.

Consequently, determining the structure of a QC does not

only mean identifying the positions rk of the m nD hyperatoms

in the nD unit cell, but also their components in the two

subspaces of the nD embedding space V ¼ V jj � V?, i.e. the

three-dimensional atoms in V jj and the (n � 3)D atomic

surfaces in V?. The structure factor is expressed as

FðHÞ ¼
Pm
k¼1

Tk Hjj;H?
� �

fk Hjj
� �

gk H?
� �

expð2�iHrkÞ ð2Þ

where TkðH
jj;H?Þ are the components of the atomic displa-

cement parameters (ADPs) in par- and perp-space (phason

factor, perp-space ADP), respectively, fkðH
jjÞ is the conven-

tional atomic form factor, and gkðH
?Þ is the geometrical form

factor, i.e. the Fourier transform of the atomic surface,

gk H?
� �

¼
1

A?UC

Z
Ak

expð2�iH?r?k Þ dr?; ð3Þ

where A?UC is the volume of the nD unit cell projected onto

V?, and Ak is the volume of the k-th atomic surface.

Example. The well known Penrose tiling (PT) is a special

case of the infinite number of generalized PTs (Pavlovitch &

Kléman, 1987), which not only differ in their LRO, but also in

their number of different vertex environments (short-range

order, SRO). Based on the limited amount of experimental

Bragg reflection data that we can collect, we are not able to

distinguish between all the different possible generalized PTs

(see Chodyń et al., 2016), let alone all the other different

tilings that may underlie a given QC structure (see, e.g.,

Deloudi et al., 2011, and references therein), which all can

have the same nD Bravais lattice and lattice parameters (see

also Niizeki, 2004, and references therein).

The structures of ACs, which can all be determined by

standard methods in a straightforward way, are very valuable

for understanding the local structure of QCs (see, e.g., Gómez

& Lidin, 2003). They allow us to unambiguously identify the
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basic structural subunits (clusters) and show how they are

connected (chemical bonding). Unfortunately, higher

approximants are rare and not every QC is accompanied by

one or more ACs. The best way to solve a QC structure at

present is by a combination of nD charge flipping and the nD

low-density elimination approach (see, e.g., Palatinus et al.,

2011; Fleischer et al., 2010; and references therein), which are

direct-space phasing methods. The resulting electron-density

distribution function provides the necessary information for

designing a starting model for subsequent structure refine-

ments.

One has to bear in mind that the result of an nD structure

analysis is always an on-average strictly quasiperiodic struc-

ture, even if the actual structure is strongly disordered (see,

e.g., Ors et al., 2014, and references therein) or just a twinned

high-order AC (cf. Estermann et al., 1994). This follows from

the basic underlying assumption that the experimental inten-

sity data can be interpreted as Bragg reflections. In order to

get a realistic picture, diffraction-based QC structure analyses

should always be complemented by imaging methods.

In the course of a quantitative structure refinement, an

initial structure model is modified to describe the experi-

mental diffraction data in the best possible way. In a standard

three-dimensional structure refinement, only three-

dimensional atomic models are fitted. This allows, rather

easily, the identification of missing or misplaced atoms,

unphysical atomic arrangements etc. In contrast, in an nD

structure refinement, complex atomic surfaces and their

partitioning have to be modelled. Consequently, a rather small

number of parameters may have large implications for the

LRO of the refined structure model in physical space.

Furthermore, the total weight in the refinements of the many

weak reflections with large perp-space components of the

diffraction vectors, H?, is usually small owing to the effect of

the perp-space ADPs, TkðH
?Þ, which decreases their calcu-

lated intensities drastically. This makes LRO models some-

what less reliable.

4.2. Electron microscopy

Imaging methods are essential for the derivation and

confirmation of proper structure models of QCs (see, e.g.,

Deloudi et al., 2011, and references therein). In particular,

spherical-aberration- (Cs-) corrected high-angle annular dark-

field and annular bright-field scanning transmission electron

microscopy (HAADF-STEM and ABF-STEM, respectively)

in combination with energy-dispersive X-ray spectroscopy

(EDX) and electron energy-loss spectroscopy (EELS),

respectively, have proven to be a powerful tool for atomic

resolution structure analysis, also allowing the identification of

atomic species (see, e.g., Yasuhara & Hiraga, 2015).

However, one has to bear in mind that electron micrographs

show only projected structures, averaged over the sample

thickness of ’10 nm (’50 atomic layers). This is no problem

in the case of DQCs with a period of two to six atomic layers

along the tenfold axis. It even makes it easier to identify the

basic clusters and the ways they overlap. In the case of IQCs,

the interpretation of the electron micrographs gets more

difficult because of their three-dimensional quasiperiodicity.

However, if a parallel set of flat atomic layers (quasilattice

planes) is oriented exactly parallel or perpendicular to the

incident electron beam, then the electron micrographs show

rather easily interpretable structural features. For an objective

method for the identification of the LRO of clusters from

high-resolution transmission electron microscopy (HRTEM)

images see Joseph et al. (1997).

4.3. Open questions and challenges

(i) It is absolutely crucial for any kind of experimental

structural study that the samples are well defined and char-

acterized. This means, in particular, that they must have a well

defined thermal history; in the best case, they should be in

thermodynamic equilibrium. For intermetallic QCs, this would

be possible only in the case of in situ HT measurements

because of the sluggish diffusion and equilibration at lower

temperatures. The usual compromise is to study samples

quenched from a thermodynamic equilibrium HT state. If only

as-cast samples were investigated, one could not distinguish

the intrinsic structural and physical properties from features

caused by chemical inhomogeneities, thermal gradients or

incomplete structural transitions.

(ii) An important question concerns the role of clusters. Are

they just a means of providing a clear and illustrative

description of complex structures, or are they also energeti-

cally favourable subunits that are crucial for AC and QC

structure formation? An interesting example is the DQC in

the system Zn–Mg–Dy (Ors et al., 2014), where clusters seem

to be absent. Is this owing to disorder or an intrinsic structural

feature?

(iii) It will not be possible to identify the LRO of even

strictly quasiperiodic structures wth the same certainty as for

periodic structures. While the number of nD Bravais lattices

for DQCs and IQCs is limited, that of different two-

dimensional and three-dimensional quasilattices (tilings

underlying quasiperiodic structures) is unlimited.

(iv) The accurate determination of the atomic surfaces is

limited by the comparably low perp-space resolution of

diffraction experiments. Because of their complex shapes, the

Bragg reflections with large |H?| components are intrinsically

weak and difficult to measure with good counting statistics.

Furthermore, random phason fluctuations weaken these

reflections even more. This has consequences for the deter-

mination of the LRO. A dynamic intensity range� 106, which

can be achieved with standard charge-coupled device (CCD)

detectors and synchrotron radiation at present, would be the

minimum for a reliable structure analysis [see Fig. 1 of Weber

et al. (2008), for instance]. Even for an extraordinarily large

dynamic range of 109, in i-Al–Cu–Fe, for instance, only

reflections that could be related to a 13/8 AC with a lattice

parameter of ’130 Å (i.e. just a few cluster diameters) could

be observed (Weber et al., 2008).

(v) Only a combined diffraction/electron microscopy

approach could identify limit-periodic structures, for instance,
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those with fractal atomic surfaces, and distinguish them from

QCs (see, e.g., Fujita & Niizeki, 2006; Niizeki, 2007).

(vi) Since the set of Bragg reflections for a QC is dense

(‘essentially discrete’), multiple diffraction can lead to a

significant bias in data collection. In particular, this has

implications for the weak Bragg reflections with large |H?|

components, which are important for the accurate determi-

nation of the shapes of the atomic surfaces and consequently

the LRO. The data could be corrected for this effect if several

data sets were collected at different X-ray wavelengths. Each

data set would suffer from different dynamic effects and a

corrected data set could be derived.

(vii) In standard structure analysis, both observed and

unobserved reflections have to be included in a structure

refinement. However, since ideal QCs have infinitely many

reflections in a given par-space range, not all unobserved

reflections can be included. Only those reflections with

calculated intensities within the dynamic range of the

diffraction experiment should be considered and included in

the refinements. This would greatly improve the reliability of

refined model structures and perp-space ADPs (see Weber et

al., 2008).

(viii) The final step in a structure refinement should be the

calculation of par-space maximum-entropy maps (which are

free from truncation effects) of the electron-density distribu-

tion function to identify shortcomings of the refined model

structure (see, e.g., Steurer et al., 1993). Thereby the phases of

the less well determined weak reflections should be allowed to

vary.

4.4. Surface structure analysis

The surfaces of QCs and their approximants do not

reconstruct as far as we know (see, e.g., Ledieu & Fournée,

2014; Hars et al., 2016). Consequently, knowledge of their

structures as obtained by scanning tunnelling microscopy

(STM) or atomic force microscopy (AFM) can be very helpful

for checking three-dimensional structure models obtained by

diffraction methods (see, e.g., Papadopolos et al., 2008). The

terrace structure of QCs that were cut slightly tilted with

respect to a facet (flat atomic layer) reflects the distances

between quasilattice planes. It also shows that the clusters in

IQCs are not stable subunits that maintain their shapes at the

surface, as suggested a while ago (Rösch & Trebin, 2008). In

contrast, the flat surface runs through the clusters along flat

atomic layers (Jung & Steurer, 2011, and references therein).

4.5. The Penrose tiling – a proper quasilattice model for real
QCs?

There are an infinite number of different quasiperiodic

tilings. Why are the two-dimensional Penrose tiling and the

three-dimensional Ammann tiling (also called the three-

dimensional Penrose tiling) passable models for the cluster-

decorated quasilattices underlying both DQCs and IQCs in so

many cases?

(a) The proper projection of a five-dimensional hypercubic

unit cell onto two-dimensional space gives a decagonal

structural subunit that can be related to the basic clusters that

are actually observed.

(b) The proper projection of a six-dimensional hypercubic

unit cell onto three-dimensional space gives an endohedral,

triacontahedral structural subunit that can be related to the

basic clusters that are actually observed.

(c) The best arrangement of these structural subunits

[‘quasi-unit cells’ according to Steinhardt et al. (1998)] corre-

sponds to the packing of the respective nD hypercubic unit

cells, i.e. to the nD lattice (Steurer & Deloudi, 2012). The

quasi-unit cells correspond to covering clusters of the PT

(Gummelt clusters) and partially overlap in a specific way.

These findings explain why the nD approach works so well

for QCs. It is the correspondence of the packing principles of

nD unit cells (without overlaps) in a hyperlattice and dD

clusters (quasi-unit cells, with overlaps). The two-dimensional/

three-dimensional quasi-Bravais lattices of two-dimensional/

three-dimensional quasi-unit cells can be considered as the

counterparts to two-dimensional/three-dimensional Bravais

lattices. There are a limited number of decagonal and icosa-

hedral quasi-Bravais lattices corresponding to just one (P)

five-dimensional decagonal and three (P, I, F) six-dimensional

icosahedral Bravias lattices (Rokhsar et al., 1987). The actual

QC structures result from a specific hyperatom decoration of

the quasi-unit cells. It is crucial to identify the correct nD

lattice parameters, which determine the cluster diameters in

physical space. Because of scaling symmetry, this is not a

straightforward task [cf. Fig. 8 of Steurer et al. (1993)]. Since

the scaling symmetry only refers to the positions of atoms and

not to their kind, the strongest peaks on a Patterson map will

mark the intercluster vectors (Cervellino et al., 1998).

4.6. Structural complexity – quasiperiodic versus periodic
complex intermetallics

How complex are QC structures? They do not have a three-

dimensional unit cell – does this mean that they are even more

complex than the most complex periodic intermetallics? For

instance, is the periodic structure of Al55.4Cu5.4Ta39.1, with

23 256 atoms per cubic face-centred unit cell and with 1393

parameters refined against 48 023 unique reflections (Weber et

al., 2009; Conrad et al., 2009) more or less complex than that of

a QC such as i-Cd5.7Yb, with 251 parameters refined against

5024 unique reflections (Takakura et al., 2007)? Or, how

complex are compositionally complex structures such as high-

entropy alloys in comparison (see, e.g., Kozak et al., 2015, and

references therein)?

First of all, we have to clarify what structural complexity

means, and how it can be described and quantified. Second,

why is it of interest at all to deal with these questions? The

term ‘complex’ is frequently used just for labelling inter-

metallic structures with specific features like large unit cells, or

cluster structures with different length scales and chemical-

bonding properties, or unusual ordering phenomena etc. (see

also Dshemuchadse & Steurer, 2013, and references therein).

In many cases these structural particularities can give rise to

the unusual physical properties of intermetallics such as low
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thermal/electronic conductivity. Understanding the principles

of their formation can pave the way to designing novel

complex structures with interesting physical properties.

Therefore, it may be of interest to discuss what structural

complexity could mean, how it could be quantified (see, e.g.,

Estevez-Rams & González-Férez, 2009), and how periodic

and quasiperiodic structures could be compared.

Structural complexity is not necessarily related to a large

number of free (variable) structural parameters. For instance,

a complex coordination polyhedron (cluster shell) such as a

truncated cuboctahedron with 48 vertices can be described by

just three fixed positional parameters in the general Wyckoff

position of the cubic space group Pm�33m. If the same truncated

cuboctahedron is slightly distorted in an irregular manner,

then it would be described in the triclinic space group P1, with

3� 48 positional parameters. Does that mean that its structure

would be much more complex now? It depends on the defi-

nition of complexity, as we will see below. What role does

symmetry play? There is just one symmetry operator in P1 but

there are 48 in Pm�33m. It should be kept in mind that structural

symmetry results a posteriori from the specific way the atoms

self-assemble and not the other way around.

There exist several ways to describe the complexity of a

system. Which is the most appropriate one for crystal struc-

tures with different kinds of LRO, i.e. periodic and aperiodic

ones? We will discuss just two approaches, taking into account

that the structure-determining factors are mainly geometrical

packing principles under the constraints of chemical bonding.

The resulting complexity is reflected in the number of atoms

per unit cell, if there is any, reduced in some way by symmetry.

A pragmatic way to quantify complexity can be based on the

amount of information necessary to describe a structure or its

growth in a useful way. By ‘useful’ we mean that there is no

need to know the actual position of each vacancy or dis-

ordered atom in a crystal, for instance; structural disorder can

be described sufficiently well by statistical parameters.

4.6.1. Algorithmic complexity. This way of quantifying the

complexity of a system is related to the minimum size of an

algorithm needed for its full description. In the case of a

periodic crystal structure, the additive algorithmic complexity

for a structure s with N atoms,

KðsjNÞ ¼ jAj þ jGj þ jLj þ jalj; ð4Þ

consists of |A|, the set of atomic coordinates in the asymmetric

unit, |G|, the generators of the space group, |L|, the set of

lattice basic vectors, and |al|, the algorithm needed to generate

the full crystal structure by multiple (up to infinite) iteration

(Estevez-Rams & González-Férez, 2009). In the case of a

quasiperiodic structure we have to replace |A|, the set of

atomic coordinates in the asymmetric unit of the nD unit cell,

by |AS|, the set of parameters fully describing the (n � 3)D

atomic surfaces, i.e. their coordinates, shapes, partitioning and

chemical occupancies. Furthermore, an algorithm is needed to

produce the three-dimensional quasiperiodic crystal structure

out of the nD structure along its intersection with the physical

space. This step will be the most laborious one.

Our example of a truncated cuboctahedron with 48 vertices

would have the same algorithmic complexity in regular and

distorted form. In the cubic space group Pm�33m we need 48

symmetry operators to generate all 48 vertices starting from a

single coordinate triplet. In the triclinic space group P1 all 48

coordinate triplets are already explicitly given. Intuitively,

however, one may say that the loss of symmetry would make a

system more complex.

The algorithmic complexity of large biomolecular struc-

tures, which can have hundreds of thousands of atoms per unit

cell, is certainly higher than that of QCs.

4.6.2. Symbolic complexity. Symbolic complexity is related

to the number of different structure motifs (atomic environ-

ment types, AETs) as a function of the system size R. The

symbolic complexity of a structure is reflected in its R atlas.

A periodic lattice has just one set of vertex configurations,

while the PT, for instance, has eight different ones. If there

exists a patch (a set of atoms such as a covering cluster or a

unit cell, for instance) from an ordered structure that has

exactly the same coordination by copies of this patch every-

where in the infinite structure then the structure is periodic. If

there exist only patches that have a finite number (>1) of

different local arrangements of copies of these patches, then

such an ordered structure is quasiperiodic or non-periodic in a

more general way. From this point of view, quasiperiodic

structures would be more complex than periodic ones.

Furthermore, one could also compare the complexity of the

patches themselves.

Our example of the truncated cuboctahedron with 48

vertices would have different symbolic complexities in its

regular and in its distorted form. In the case of the regular

polyhedron, each vertex would be surrounded by a square, a

regular hexagon and a regular octagon. So, all vertices would

have the same environment. This is different for an arbitrarily

distorted truncated cuboctahedron. All vertex environments

would still consist of quadrangles, hexagons and octagons, but

all of them would be irregularly distorted. Consequently, the

distorted polyhedron would have 48 different vertex config-

urations, and would be more complex than the regular one.

If one were to compare the R atlases of the most complex

biomolecules with those of QCs, then biomolecules would

certainly be found to be more complex owing to the large

number of atoms (and their AETs) per unit cell.

4.6.3. Relative complexity of aperiodic crystals in general
and the nD approach. Let us start from a simple periodic

structure (PS) with period a and apply a displacive sinusoidal

modulation with incommensurate period �a, with � an irra-

tional number. This immediately changes the period of

the structure from a to infinity. However, the algorithmic

complexity of the incommensurately modulated structure is

only slightly higher than that of the PS, although the unit cell

now formally contains an infinite number of atoms. In the

case of a commensurate modulation, we can continuously

increase the number of atoms per supercell and, consequently,

the symbolic complexity. Since we can always describe the

respective modulated structure by the nD approach in the

same way, changing the superperiod (modulation wavelength)

8 Walter Steurer � Quasicrystals: What do we know? Acta Cryst. (2018). A74, 1–11

topical reviews



by changing the slope of the cutting (physical) space would not

change the algorithmic complexity of the structure.

Similar considerations apply to ACs and QCs. The algo-

rithmic and symbolic complexities of three-dimensional and

nD periodic structures can be compared with each other if the

three-dimensional structures can be embedded as approx-

imants in nD space. Then, a small perp-space shear of an nD

structure can lead either to an AC or a QC. This would result

in equal algorithmic complexities of ACs and QCs. This again

is counterintuitive, because low- and high-order ACs with

small and very large unit cells, respectively, would also have

the same algorithmic complexity but very different symbolic

complexities.

How does this work if we stay in par-space? Let us check

this by using the example of the Fibonacci sequence (FS) and

one of its ACs. The generating algorithms differ slightly from

one another because the AC is generated by unit-cell trans-

lations, wn+2 = wn+1 + w, with the unit cell (word) w = LSL, for

instance, and the FS by the concatenation wn+2 = wn+1 + wn,

with the initial conditions w0 = S, w1 = L. Consequently, the

algorithmic complexity would be equal as well (Fig. 3).

For calculating the symbolic complexity, we would choose

the patch (word) LSL of the FS and check the surrounding

of every word in the infinite AC. It would always be the same.

In the case of the FS, we would have more than one type

of surrounding such as LSLLSLSLL, LLSLSLLSL,

LSLLSLLSL. Consequently, the symbolic complexity of the

FS would clearly be higher.

5. Quasicrystal growth

‘For this reason, I was somewhat doubtful that nature would

actually produce such ‘quasi-crystalline’ structures sponta-

neously’ said Roger Penrose (Thomas, 2011). ‘I couldn’t see

how nature could do it because the assembly requires non-local

knowledge’. The growth of quasiperiodic structures is still not

fully clarified; however, some realistic models and simulations

have been published recently (see Kuczera & Steurer, 2015,

and references therein). It should be borne in mind that no

atomistic growth models exist for complex intermetallics

either. How does the 1000th atom find its site in a giant unit

cell with thousands of atoms? When does a structure grow

periodically, when quasiperiodically?

The driving forces for the growth of intermetallic QCs are:

(a) a well defined chemical composition providing a specific

valence-electron concentration; (b) energetically favourable

structural subunits (clusters) with well defined ‘overlap’ rules
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Figure 3
The Fibonacci sequence (left) and its approximant (right) generated by
the recursive concatenation operations wn+2 = wn+1 + wn and wn+2 = wn+1

+ w, respectively.

Figure 4
Arrangements of columnar clusters forming decagonal Al–Cu–Rh
(Kuczera et al., 2012). Their chemical composition varies with increasing
size. The three structures at the bottom are patches of two periodic and
one quasiperiodic arrangement of clusters. They differ significantly in
chemical composition and symmetry as indicated by the orange lines.
Obeying the overlap rules also means obeying the FALC rule, which is
demonstrated with a subset of layer lines on the topmost clusters.



and compositions differing from the overall composition – the

SRO component; (c) minimum fluctuations of the local

composition (MFLC) and, in consequence, of the chemical

potential, around the given global average one; and (d)

faceted growth [low-energy atomic layers (see, e.g., Steurer,

2011; Dshemuchadse et al., 2011; Katz & Duneau, 1986)] – the

LRO component.

As indicated in Fig. 4, the main factors controlling AC/QC

growth are the local chemical composition(s) of the funda-

mental cluster(s) versus the global composition and the flat

atomic layers continuation (FALC) rule [Fig. 5; see also Figs. 2

and 3 of Steurer & Deloudi (2014)]. The MFLC rule will lead

to quasiperiodic growth (Fig. 6) if the the stoichiometry allows

it. Local phason flips of clusters do not change the chemical

composition; however, they break the FALC rule. In contrast,

strongly phason-strained structures, which are in the extreme

case orientationally twinned nanodomain structures (Honal et

al., 1998, and references therein), will have an AC chemical

composition. Such structures can be seen as textured poly-

crystalline structures of ACs rather than as disordered quasi-

periodic structures.

5.1. Open questions and challenges

(i) We need to continue developing realistic three-

dimensional growth models, i.e. starting with nucleation and

growth from the melt (see, e.g., Kuczera & Steurer, 2015).

These should take into account that chemical SRO already

takes place in the melt close to the melting temperature.

Depending on the stoichiometry either ACs or QCs should

grow.

(ii) We also need to study the heterogeneous growth of

QCs on surfaces of periodic crystals by AFM/STM; see,

for instance, the growth of decagonal Al–Co–Ni on the (110)

surface of cP2-Al(Co,Ni) (B2 or � phase) (Steurer, 2006b)

or of icosahedral Ti–Ni–Zr on (0001)-Al2O3 (Willmott et al.,

2005).

6. Conclusions

What do we want to know about the structure of a periodic

crystal? The answers are: the content of the unit cell, its

structure and the kind of chemical bonding based on

quantum-mechanical calculations. If the LRO is periodic, then

there is no need to study it except in the case of intrinsic

disorder. In the case of a quasiperiodic structure, however,

both the SRO and the LRO need to be determined. In some

cases this is only possible up to some limit, but this may still be

sufficient to gain a good understanding. Our absolute limit, at

present, is that we are not able to use quantum-mechanical

calculations for QCs in the same way as for periodic crystals in

order to identify when, for instance, it is advantageous for a

structure to become quasiperiodic instead of forming a high-

order AC.
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Figure 5
Example of a schematic growth algorithm. In the first step one cluster
(marked by a red dot in the centre of the cluster at top left) is surrounded
by ten others obeying the overlap rules. Then a ring of ten more clusters is
added, and so on. The red dots mark cluster centres, which all lie on
intersections of quasilattice lines. For creating a quasiperiodic structure
the FALC and the MFLC rule must be obeyed.

Figure 6
(a) Sequences with overall composition LS (top), L2S (middle) and L�S,
i.e. the FS (bottom), with the decomposition into covering clusters of the
type (LS) in both orientations. The upper two sequences are rational
approximants of the quasiperiodic FS. (b) The overall stoichiometry of
the FS, i.e. the ratio of the number of L’s to the number of S’s, is defined
by the slope of the strip. Its width W constrains the maximum
stoichiometry fluctuations around the ideal value ��1.
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Rösch, F. & Trebin, H. R. (2008). Z. Kristallogr. 223, 827–829.
Royal Society of Chemistry (2012). Chem. Soc. Rev. 41, 6709–6848.
Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. (1984). Phys. Rev.

Lett. 53, 1951–1953.
Steinhardt, P. J., Jeong, H. C., Saitoh, K., Tanaka, M., Abe, E. & Tsai,

A. P. (1998). Nature, 396, 55–57.
Steurer, W. (2004). J. Non-Cryst. Solids, 334–335, 137–142.
Steurer, W. (2006a). Philos. Mag. 86, 1105–1113.
Steurer, W. (2006b). Z. Kristallogr. 221, 402–411.
Steurer, W. (2007). Philos. Mag. 87, 2707–2712.
Steurer, W. (2011). Z. Anorg. Allg. Chem. 637, 1943–1947.
Steurer, W. (2012). Chem. Soc. Rev. 41, 6719–6729.
Steurer, W. & Deloudi, S. (2009). Crystallography of Quasicrystals.

Concepts, Methods and Structures. Springer Series in Materials
Science, Vol. 126. Heidelberg: Springer.

Steurer, W. & Deloudi, S. (2012). Struct. Chem. 23, 1115–1120.
Steurer, W. & Deloudi, S. (2014). C. R. Phys. 15, 40–47.
Steurer, W. & Dshemuchadse, J. (2016). Intermetallics – Structures,

Properties and Statistics. IUCr Monographs on Crystallography,
Vol. 26. Oxford University Press.

Steurer, W. & Haibach, T. (1999). Acta Cryst. A55, 48–57.
Steurer, W., Haibach, T., Zhang, B., Kek, S. & Lück, R. (1993). Acta

Cryst. B49, 661–675.
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