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Time-delayed, narrow-band echoes generated by forward Bragg diffraction of

an X-ray pulse by a perfect thin crystal are exploited for self-seeding at hard

X-ray free-electron lasers. Theoretical predictions indicate that the retardation

is strictly correlated to a transverse displacement of the echo pulses. This article

reports the first experimental observation of the displaced echoes. The

displacements are in good agreement with simulations relying on the dynamical

diffraction theory. The echo signals are characteristic for a given Bragg

reflection, the structure factor and the probed interplane distance. The reported

results pave the way to exploiting the signals as an online diagnostic tool for

hard X-ray free-electron laser seeding and for dynamical diffraction investiga-

tions of strain at the femtosecond timescale.

1. Introduction

Hard X-ray free-electron lasers (XFELs) are novel photon

sources, which rely on the self-amplified spontaneous emission

(SASE) process to obtain peak brightnesses in the soft and

hard X-ray regime that are orders of magnitude larger than

those achieved with insertion devices at third-generation

synchrotron light sources (Margaritondo & Rebernik Ribic,

2011). The ultrashort pulse length opens new avenues for

investigations of phenomena at the femtosecond timescale.

The SASE radiation arises from amplification of stochastic

noise in the electron bunch. Therefore, it consists of many

longitudinal modes (Wark & Lee, 1999), and exhibits strong

shot-to-shot fluctuations of both the mean pulse energy and

the pulse spectrum. Furthermore, the relative bandwidth at an

XFEL operating in SASE mode is typically of the order of

10�3. Many XFEL experiments require a much narrower

bandwidth and excellent spectral stability (Alonso-Mori et al.,

2015). These beam properties can be enforced by inserting a

monochromator in the X-ray beam path, at the expense of

losing a large fraction of the beam intensity.

Self-seeding has been proposed as an intensity-efficient

mode of operation for XFELs (Saldin et al., 2001). After

SASE amplification in a first undulator section, the electron

bunch is separated from the photons and delayed by a

magnetic chicane, which also refreshes the electron bunch by

suppressing the microbunching that results from the SASE

process. The X-ray photon pulse is unaffected by the chicane

and propagates straight to a monochromatizing optical

element that delays a narrow-bandwidth pulse from the main

SASE pulse, while the rest of the energies of the SASE pulse

propagate unperturbed. Hence, the electron-bunch retarda-

tion is essential for the longitudinal overlap of the electron

bunch with the retarded photon pulse, which acts as a narrow-
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band seed for the FEL amplification along the second undu-

lator section. The XFEL pulse thus obtained is characterized

by the same narrow bandwidth and by a stable wavelength set

by the monochromator.

In the hard X-ray regime, monochromators are typically

based on perfect crystals. Geloni et al. (2010) have proposed

generating the narrow-band seed with a thin crystal in the

Bragg condition. This process of forward Bragg diffraction

(FBD) is described by the dynamical diffraction theory

(Zachariasen, 1945; Batterman & Cole, 1964; Shvydko, 2004),

which accounts for multiple-scattering effects relevant in

perfect crystals. For most of the radiation in the incoming

SASE pulse the crystal is transparent. Only the wavelengths

that are close to or satisfy the Bragg condition are affected,

and a series of time-delayed pulses of low intensity but narrow

bandwidth, called echoes, are generated in the temporal tail of

the transmitted pulse (Geloni et al., 2010; Shvydko & Lind-

berg, 2012; Yamg & Shvydko, 2013). This self-seeding scheme

has been demonstrated experimentally at the Linac Coherent

Light Source (LCLS) XFEL. The relevant publication

(Amann et al., 2012) hints at the fact that the echoes used to

seed the electron pulse in the downstream undulator section

are subject to a transverse displacement, a phenomenon

predicted to be closely related to the retardation of the echoes

(Shvydko & Lindberg, 2012).

There is great interest in the fine-tuning possibilities of the

FBD process, mainly in view of the possible future imple-

mentation of self-seeding at e.g. the hard X-ray beamline

ARAMIS of the Swiss X-ray free-electron laser (SwissFEL)

(Milne et al., 2017). The work presented here aims to gain a

better understanding of space-, time- and frequency-domain

effects in the FBD process. The results reported represent the

first direct and unambiguous experimental evidence of the

spatially displaced echoes in the forward transmitted photon

beam, made possible using an X-ray beam focused down to

the micrometre scale. Our results are backed up by simula-

tions that confirm the interpretation of the experimental

signals in terms of FBD echoes.

The article is structured as follows. In x2 of this work, the

key points of the dynamical diffraction theory relevant to the

FBD problem are reviewed and their implementation in the

simulation tools is described. x3 describes the diffraction

experiments. The results are reported in x4, which include the

comparison with the outcome of the simulations. In x5 the

results are discussed from a wider perspective and the possible

applications are addressed.

2. Theory

2.1. Dynamical diffraction effects on propagation of X-rays
through a perfect crystal

Consider the situation represented in Fig. 1, in which an

incoming X-ray beam hits a perfect thin crystal of infinite

transverse extension. If the crystal is oriented such that the

Bragg condition for a certain reflection is satisfied, part of the

X-ray intensity is diffracted. The precise redistribution

between transmitted and diffracted intensity is subtle, espe-

cially for thin crystals, and is intimately related to the echo

phenomenon under consideration.

First, an incident plane wave is considered (Fig. 1). The

incident wavevector k0, the Bragg vector H of the considered

crystal reflection and the surface unit normal n are restricted

to lie in the same plane, corresponding to the drawing plane of

the figure. The length k of the wavevector is related to the

photon wavelength � by k ¼ 2�=� and the corresponding

photon energy is ! ¼ ck with c the speed of light. The length

of the Bragg vector is related to the diffraction plane

separation d by H ¼ 2�=d. The incidence angle � is the angle

between k0 and �H, and the asymmetry parameter � is the

angle between H and �n. The Bragg condition is

ð2k0 þHÞ �H ¼ Hð�2k sin �B þHÞ ¼ 0; ð1Þ

which sets the Bragg angle �B for a given photon energy. The

wavevector of the transmitted plane wave is the same as that

of the incident wave. The wavevector kH of the diffracted

wave has the same length k and its direction is uniquely

defined by requiring that the difference vector ½kH � ðk0 þHÞ�

is parallel to n (Batterman & Cole, 1964). We denote

�0 ¼ � � �, �H ¼ � þ � and �i ¼ cosð�iÞ, with i ¼ 0;H. Other

parameters of the crystal that are relevant for the diffraction

process are the crystal thickness �, the unit-cell volume V, and
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Figure 1
Sketch of the geometry of diffraction from a thin crystal in (a) Bragg geometry and (b) Laue geometry. The crystal of thickness �, with the Bragg vector H
and the surface normal n, is represented in grey with the white stripes parallel to the Bragg diffraction planes. The wavevector of the incident and
transmitted beam is k0, while that for the diffracted beam is kH. The incident angle �, the asymmetry angle � and the angle differences �0 and �H are
indicated. P is a reference point on the crystal entrance surface. (c) Illustration of the coordinate system ðx; zÞ for the incoming and transmitted beam,
and ðx0; z0Þ for the diffracted beam. �ref is the incidence angle for the z direction.



the Fourier transforms of the unit-cell structure factors F0, FH

and FH at momentum transfer zero, H and H.

The diffraction process is described by the transmission and

reflection coefficients R and T. The meaning of these coeffi-

cients is that an incident plane wave expð�ik0rÞ leads to a

transmitted plane wave T expð�ik0rÞ plus a diffracted wave

R expð�ikHrÞ. The coefficients are obtained by imposing

suitable boundary conditions for the electric and magnetic

fields at the two crystal surfaces between the Maxwell equa-

tion solutions outside the crystal, which are plane waves, and

the solutions of the Maxwell equations inside the crystal

derived from the dynamical diffraction theory (Zachariasen,

1945; Batterman & Cole, 1964). For Bragg geometry (Fig. 1a),

in which the diffracted wave is exiting by the same crystal

surface as the incoming wave (��B <�< �B), the formulas are

Tðk; �Þ ¼
c1c2ð�2 ��1Þ

c2�2 � c1�1

; Rðk; �Þ ¼
�2�1ðc1 � c2Þ

c2�2 � c1�1

: ð2Þ

For the opposite Laue geometry, in which the diffracted wave

is exiting by the same crystal surface as the transmitted wave

(�B <�), the formulas are

Tðk; �Þ ¼
ðc1�2 � c2�1Þ

�2 � �1

; Rðk; �Þ ¼
�2�1ðc1 � c2Þ

�2 � �1

: ð3Þ

The expressions appearing in the above formulas are

c1;2 ¼ expð�i’1;2�Þ; ’1;2 ¼
k0

2�0

½ 0 � 	� ðsþ 	
2Þ

1=2
�;

�1;2 ¼
�	� ðsþ 	2Þ

1=2

P H

;

whereby

	 ¼
1� b

2
 0 þ

b

2

; s ¼ b H H;

with  q ¼ �Fqð4�reÞ=ðVk2Þ (where re is the classical electron

radius) for q ¼ 0;H;H. The basic parameters b and 
 are

b ¼ 1þ
n �H

n � k0

� ��1

¼ 1�
2 sinð�BÞ cosð�Þ

sinð� þ �Þ

� ��1

’
�0

�H

;


 ¼
1

k2
ðH2 þ 2H � k0Þ ¼ 4 sinð�BÞ sinð�BÞ � sinð�Þ

� �
’ 2 sinð2�BÞð�B � �Þ;

whereby the last approximations are valid for small differ-

ences �B � �.
Next, X-ray beams of finite transverse extension and small

divergence are considered, and are described in the Fourier

space approach (Fig. 1c). To this end, for each beam a spatial

coordinate system ðx; zÞ has to be fixed, with z the coordinate

in the direction of propagation and x the transverse coordi-

nate. A beam is then defined by specifying the Fourier

components of the electric field ÊEðk; kx; zÞ at any longitudinal

point z, from which the field on the corresponding transverse

plane and as a function of time is obtained by Fourier trans-

formation:

Eðt; x; zÞ ¼
R

dk dkx ÊEðk; kx; zÞ exp½�iðckt � kxxÞ�: ð4Þ

The superposition of photon energies ck and of transverse

wavevector components kx gives a time and a spatial structure,

respectively. The components of the same beam at two

different longitudinal coordinates z1 and z2 are related by the

free-space propagation

ÊEðk; kx; z2Þ ¼ exp½�iðk2 � k2
xÞ

1=2
ðz2 � z1Þ�ÊEðk; kx; z1Þ; ð5Þ

which is a simple phase multiplication. One recognizes that the

Fourier component ÊEðk; kx; zÞ is associated with a plane wave

with wavevector ½kx; kz ¼ ðk
2 � k2

xÞ
1=2
�, forming the small

angle �� ¼ kx=kz ’ kx=k with the z direction.

The coordinate system ðx; zÞ shown in Fig. 1(c) is suitable

for both the incident and the transmitted beam. The z direc-

tion can be set to a reference incidence angle �ref corre-

sponding to the direction of the incident beam. Similarly, the

coordinate system ðx0; z0Þ shown in the figure can be set with z0

in the direction of the diffracted beam.

Let us denote by ÊEIðk; k0x; z�Þ the Fourier components of

the incident X-ray beam hitting the crystal at the spatial point

P as shown in Fig. 1(c), with z� the longitudinal coordinate

directly upstream of the crystal in the ðx; zÞ coordinate system.

The transmission and reflection coefficients above are now

used to propagate the beam through the thin crystals. The

Fourier components of the transmitted beam at the coordinate

zþ right after the crystal are indeed given by

ÊETðk; k0x; zþÞ ¼ T½k; �ðk; k0xÞ�ÊEIðk; k0x; z�Þ ð6Þ

where the diffraction angle associated with the wavevector

ðk; k0xÞ is given by �ðk; k0xÞ ¼ �ref þ k0x=k. The Fourier

components of the diffracted beam at the coordinate z0þ right

after point P are given by the propagation

ÊERðk; kHx0 ; z0þÞ ¼ R½k; �ðk; k0xÞ�ÊEIðk; k0x; z�Þ: ð7Þ

In this equation, kHx0 is the transverse wavevector component

of the diffracted wavevector kH , and it depends on k and k0x.

The detailed features of the transmitted and diffracted

beams are encoded in the form of T and R. Fig. 2 provides a

qualitative illustration. Panel (a) is a DuMond diagram

(DuMond, 1937), with axes k and � ’ k0x=k, in which the

incoming beam is represented as an oval. The dashed line

corresponds to Bragg’s law for the reflection d-spacing, while

the yellow strip corresponds to the Darwin acceptance of the

reflection taking account of refraction at the surface, in which

the reflection coefficient Rðk; �Þ is significantly different from

zero. Its precise position depends on the asymmetry of the

diffraction geometry. Examples of the incoming beam are

sketched as ovals for the off- and on-diffraction conditions. In

the former case, the transmitted beam matches the incoming

beam upon overall attenuation because of absorption effects

in the crystal, and the intensity of the diffracted beam vanishes

(Fig. 2b). In the latter case, diffraction of the incident beam

creates spatio-temporal echoes in the diffracted and trans-

mitted beam represented by the blue dashed lines in Fig. 2(c),

a phenomenon that is discussed in more detail in x2.2 for the

transmitted beam.
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It is important here to remark that amplitude and phase of

the electric field in the transmitted beam are independent of

the position of the crystal along the beam propagation direc-

tion. Indeed, the free-space propagator (5) and the through-

crystal propagator (6) commute because they are both

multiplicative in Fourier space. This implies that the X-ray

intensity observed in the waist at z ¼ 0 in Fig. 2(c) does not

change as the crystal moves upstream from the waist into the

convergent-beam region. A similar but more involved

consideration applies to the diffracted beam, but is beyond the

scope of this work. The total intensity of the diffracted beam is

however independent of the crystal z position.

2.2. Spatio-temporal echoes

An ideally collimated X-ray pulse propagating in a certain

direction is represented by a vertical, infinitely thin oval in the

DuMond diagram of Fig. 2(a). When such a short pulse

propagates through a perfect thin crystal oriented to generate

a diffracted beam, one observes beats of X-ray intensity that

are delayed with respect to the main high-intensity pulse

(Geloni et al., 2010; Shvydko & Lindberg, 2012). These beats

have been called temporal echoes. Their origin is explained

qualitatively in a simple way by Geloni et al. (2010) as a

consequence of the shape of the transmission coefficient

Tðk; �Þ along the momentum coordinate k at fixed incident

angle �.

A monochromatic X-ray beam of

narrow waist is represented by a hori-

zontal, infinitely thin oval in the

DuMond diagram of Fig. 2(a). When

such a beam traverses the crystal, part

of the X-ray intensity is displaced

transversely and appears as lateral

humps, called spatial echoes, in a near-

field image at the beam waist (Bushuev,

2008; Bushuev & Samoylova, 2011;

Bushuev & Oreshko, 2007). Their origin

is explained in the same way as for the

temporal echoes, because the behaviour

of T along � at fixed k is similar.

Shvydko and Lindberg recently

pointed out that, in the general case, the

incoming beam shows both a temporal

and spatial structure, so that temporal

and spatial echoes appear together

(Lindberg & Shvydko, 2012; Shvydko &

Lindberg, 2012). The time delay and the

transverse displacement associated with

an echo are related linearly by

�x ¼ c cotð�Þ�t ð8Þ

[see Figs. 6 and 9 of Shvydko & Lind-

berg (2012)].

In order to interpret the experimental

data presented later, we simulated

systematically the propagation of an X-ray pulse through a

thin, infinitely extended perfect crystal, placed anywhere

upstream of the beam waist.

The incoming pulses were defined in Fourier space as

ÊEIðk; k0x; z ¼ 0Þ ¼ MSið311Þ;kc
ðkÞ exp �

k2
0x

2�2
kx

 !
: ð9Þ

MSið311Þ;kc
is the transmission of a two-bounce symmetric

Si(311) crystal monochromator set to the photon energy ckc,

and represents the monochromator output of a perfectly

collimated broadband pulse. The second factor implements

the effect of an ideal, achromatic focusing element that makes

the beam Gaussian and enforces the beam divergence

2�� ¼ 2�kx
=kc. The waist is located at z ¼ 0 and the amplitude

shows a Gaussian profile with an r.m.s. width of �x ¼ 1=�kx
.

We performed simulations for the configurations that were

measured experimentally. The width of the intensity profile of

the beam at the waist was set to the FWHM value 2ðln 2Þ1=2�x

= 1.5 mm corresponding to the setup described in x3.2.

In the following, two concrete examples at the photon

energy of 12 keV are discussed in more detail. The Darwin

width of the Si(311) monochromator is 9.21 � 10�6, which

gives an energy bandwidth of 0.32 eV. The intensity width at

the waist of 2ðln 2Þ1=2�x = 1.5 mm FWHM was enforced by

setting the beam divergence to 2ðln 2Þ1=2�� ¼ 3:14� 10�5

FWHM. The diamond (220) reflection was considered, which
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Figure 2
(a) DuMond diagram with sketched Bragg-condition line (dashed orange line) and diffraction
region (yellow strip). The two cyan ovals are examples of an off- and an on-diffraction condition
beam, with bandwidth �! and divergence ��. The dashed red and blue lines represent examples of
angular and energy scans, respectively. The sketch is almost to scale for the (220) diamond reflection
in the Bragg condition at 12 keV (see text). (b), (c) Sketches of the crystals, the X-ray beams and
X-ray pulses for the off- and on-diffraction conditions, respectively. The converging incident beam
comes from the right, has a waist at z ¼ 0 and hits the crystal upstream of the waist. In the off-
diffraction case (b), the diverging transmitted beam matches the free-space propagation of the
incoming beam after accounting for overall absorption. In the on-diffraction case (c), part of the
intensity is redirected to the diffracted beam. Both transmitted and diffracted beams exhibit a
substructure in the lateral spatial dimension.



gives a Bragg angle of 24.1810� and a Darwin width of

��D ¼ 9:4� 10�6.

In the first example, a diamond crystal of thickness

� ¼ 400 mm was assumed in symmetric Bragg geometry

(� ¼ 0). The reference z direction was set such that �ref =

24.1810�, which gives the maximum of R at exactly 12 keV, and

the simulations were performed for a number of beam ener-

gies ckc in a narrow range around ck	c = 12 keV.

Fig. 3(a) shows the reflectivity curve for the energy scan.

The total intensity in the diffracted beam is calculated by the

integration IR ¼
R

dk dk0xjÊERðk; k0x; z ¼ 0Þj2 and is displayed

as a function of the energy difference �k ¼ kc � k	c . Figs. 3(b)

and 3(c) show the time evolution of the intensity profile of the

transmitted beam at the waist downstream of the crystal,

calculated using equations (6) and (4), followed by the

quadrature ITðt; xÞ ¼ jETðt; x; z ¼ 0Þj2. It is evident that the
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Figure 3
(a) Simulated reflectivity curve IRð�kÞ for the (220) reflection in symmetric Bragg geometry of a 400 mm-thick diamond single crystal at 12 keV. (b), (c)
Simulated transverse intensity profile ITðt; xÞ in the x direction as a function of time t of the transmitted beam at the beam waist downstream of the
crystal: (b) photon energy 3 eV below the maximal diffraction condition, corresponding to point (1) in panel (a); (c) photon energy for the maximal
diffraction condition, corresponding to point (3) in panel (a). (d), (e) Images of the intensity I

t
ðx; yÞ in the transverse ðx; yÞ plane integrated over time

for the configurations of panels (b) and (c), respectively.



X-ray pulse is unaffected by the crystal in the off-Bragg case

(b). In the on-diffraction condition case (c) we observe the

intensity humps of the spatio-temporal echoes with the char-

acteristic signature of equation (8). The 0th-order echo is

neither delayed nor displaced, and can therefore be inter-

preted as the direct beam. Its intensity is much lower than that

of the direct beam in the off-diffraction case, because photons

are distributed over the other echoes and to the diffracted

beam. These observations are perfectly in line with the results

presented by Shvydko & Lindberg (2012), the difference being

that here we use a monochromatic instead of a white incoming

beam. In Figs. 3(d) and 3(e), we show, again for the off- and

on-diffraction conditions, the intensity distribution I
t

Tðx; yÞ in

transverse space after projection over time. For the sake of

visual comparison with the experimental images presented

later, we added the second transverse spatial dimension y. To

the right-hand side of equation (9), we added the multi-

plicative Gaussian factor expð�k2
0y=2�2

ky
Þ to give a spatial

structure in y. The additional dimension is trivial, meaning

that the y dependence of electric field and intensity is not

altered by the crystal, which follows from the fact that the

transmission and reflection coefficients are independent of the

y coordinate.

In the second example, the diamond crystal had a thickness

� ¼ 100 mm and was oriented in symmetric Laue geometry

(� ¼ �=2). The reference z direction was again set such that

the maximum of R was exactly at 12 keV, which for symmetric

Laue geometry means �ref ¼ �B = 24.1810�. The simulations

were performed analogously to the first example, and the

equivalent results of Fig. 3 are shown in Fig. S1 in the

supporting information.

2.3. Analysis of the echo signal

We define the echo signal as the projection over time and

over the trivial transverse space dimension,

SðxÞ ¼
R

dt dy jETðt; x; y; z ¼ 0Þj2: ð10Þ

Fig. 4 shows the time-integrated echo signal, SðxÞ, at the five

different photon energies indicated on the reflectivity curve

for the symmetric Bragg case example of Fig. 3(a). Away from

the diffraction condition (points 1 and 5), only the unper-

turbed, direct-beam signal appears. Inside the on-diffraction

condition window (points 2, 3 and 4), the echoes are observed

as a series of maxima. Each signal at a given photon energy kc

was modelled with a multiple Gaussian peak function of the

form

Sfit
GaussðxÞ ¼

XNe

i¼0

Ai

$i

exp �
1

2

x� xi

$i

� �2
" #

: ð11Þ

Ne is the number of echoes that are considered for the

modelling. The parameters xi, $i and Ai are the position, the

r.m.s. width and the integrated signal of the ith echo, respec-

tively. The full width at half-maximum is given by FWHM =

2ð2 ln 2Þ1=2 $i. Outside the diffraction window, a single peak

was sufficient to fit the model function to the signal, while for

the data inside the diffraction window we used Ne ¼ 7

Gaussian peaks. The echo positions xi and widths $i were

determined by fitting at the maximal diffraction point (3), and

were then kept unchanged for fitting at all other photon

energies kc. The values of all fitted parameters for the two

representative energies 3 eV below diffraction condition (1)

and at maximal diffraction (3) are reported in Table 1 (left).
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Figure 4
(a) Transverse echo signals SðxÞ at the five points along the reflectivity
curve indicated in Fig. 3(a). The energy deviation from the maximal
diffraction condition is indicated. The blue dots are the data extracted
from the simulated images [see examples in Figs. 3(d), (e)], while the red
curves are the modelled multi-peak function [equation (11)]. (b) Same as
(a) for the on-diffraction condition point (3) but in vertical logarithmic
scale. The positions of the direct beam hump (0th-order echo) and of the
transverse echoes are indicated.



The obtained model functions are shown as red curves in Fig. 4

and reproduce well the echo signal data, as can be seen in

particular in the logarithmic representation in Fig. 4(b).

Fig. 5 shows the reflectivity curve [panel (a)] and the echo

signals with the corresponding modelling function [panels (b),

(c)] for the Laue case example. The analysis of the echo signals

was performed in the same way as for the Bragg case example,

and the fitting parameters for the off- and on-diffraction

conditions are listed in Table 2 (left). As shown in the loga-

rithmic presentation in Fig. 5(c), the shape of the echo signal

differs markedly from the symmetric Bragg case. The echo

humps are not clearly visible, in particular those with displa-

cements between 15 and 60 mm. Their approximate positions

to be used as a starting value for fitting at the on-diffraction

point (3) were inferred from a series of simulations with

crystals with various thicknesses close to 100 mm (see Fig. S2 in

the supporting information).

As a final remark concerning the simulations, it should be

pointed out that the spectra and temporal shapes assumed for

the incoming X-ray pulses are not realistic for synchrotron or

SASE-FEL X-ray sources. The real spectra exhibit narrow

spikes of width corresponding to the inverse pulse length, of

the order of 50 ps and 10 fs, respectively. Similarly, the internal

time structure of these pulses contains spikes of duration

equal to the inverse bandwidth. To reproduce for example the

experiments reported in this work with 50 ps synchrotron

pulses, both the direct beam and the echoes of Figs. 3(b), 3(c)

would have to be convoluted with the suitable time structure.

However, this operation does not affect the time-integrated

intensity, and therefore neither does it affect the echo signals.

3. Experiment

3.1. Crystal samples

The samples under study were three diamond single crystals

of 100, 400 and 500 mm thickness, with a square shape of 5 mm

edge length. From Laue diffraction studies performed with a

laboratory X-ray source, we established the surface normal to

be parallel to the (110) reflection direction for the 400 mm-

thick crystal, and parallel to the (100) reflection direction

research papers

Acta Cryst. (2018). A74, 75–87 A. Rodriguez-Fernandez et al. � Forward Bragg diffraction by perfect crystals 81

Table 1
Fitting parameters from a 400 mm-thick crystal for the (220) reflection at 12 keV in symmetric Bragg geometry for (left) modelling the simulated echo
signals SðxÞ with the Gaussian multi-peak function [equation (11)] and for (right) experimental echo signals SðxÞ with the Lorentz multi-peak function
[equation (12)].

The values are reported for an energy of 3 eV below the perfect Bragg condition, for which a single peak was sufficient, and for the perfect Bragg condition, for
which seven additional echo peaks were modelled. The reported parameters are the energy deviation c�k, the order of the echoes i, the transverse echo
displacement xi, the full width at half-maximum of the echoes FWHMi, the integrated intensity of the echoes Ai and the R2 value of the fitting procedure.

Simulation Experiment

c�k (eV) i xi (mm) FWHM (mm) Ai (a.u.) R2 xi (mm) FWHM (mm) Ai (a.u.) R2

�3.0 0 0.00 1.51 1.00 0.99997 0.00 3.23 1.00 0.99997

0.0 0 0.0 1.51 0.04 0.96 0.00 3.23 0.04 0.98
1 1.1 1.15 0.10 — 1.05 3.13 0.08 —
2 2.9 1.24 0.15 — 3.15 3.46 0.15 —
3 5.3 1.32 0.11 — 5.43 3.57 0.10 —
4 8.4 1.75 0.08 — 8.45 3.62 0.06 —
5 12.2 1.99 0.06 — 11.79 4.03 0.04 —
6 16.4 2.41 0.04 — 15.49 4.04 0.04 —
7 21.6 2.49 0.03 — 20 4.05 0.03 —

Table 2
Fitting parameters from a 100 mm-thick crystal for the (022) symmetric Laue geometry reflection at 12 keV for (left) modelling the simulated echo signals
SðxÞ with the Gaussian multi-peak function [equation (11)] and (right) experimental echo signals SðxÞ with the Lorentz multi-peak function [equation
(12)].

The values are reported for an energy of 3 eV below thte perfect Bragg condition, for which a single peak was sufficient, and for the perfect Bragg condition, for
which seven additional echo peaks were modelled. The reported parameters are the energy deviation c�k, the order of the echoes i, the transverse echo
displacement xi, the full width at half-maximum of the echoes FWHMi, the integrated intensity of the echoes Ai and the R2 value of the fitting procedure.

Simulation Experiment

c�k (eV) i xi (mm) FWHM (mm) Ai (a.u.) R2 xi (mm) FWHM (mm) Ai (a.u.) R2

�3.0 0 0.00 1.50 1.00 1 0.00 3.35 1.00 0.999

0.0 0 0.00 1.50 0.100 0.98 0.00 3.35 0.285 0.98
1 1.33 1.23 0.346 — 1.04 3.32 0.427 —
2 5.51 3.32 0.243 — 6.47 6.13 0.161 —
3 16.24 6.40 0.086 — 19.37 6.37 0.032 —
4 22.54 8.43 0.030 — 28.34 5.60 0.015 —
5 35.03 10.58 0.002 — 39.10 5.67 0.001 —
6 47.89 8.86 0.006 — 51.77 5.57 0.002 —
7 53.67 7.42 0.008 — 58.16 5.59 0.003 —



for the 100 and 500 mm-thick crystals. For later convenience,

we label the three crystals as C100mm (100), C400mm (110) and

C500mm (100).

3.2. Experimental setup

The aim of the experiment was to observe and characterize

the echoes at the beam waist produced by the thin diamond

crystals. The measurements were performed at the microXAS

beamline of the Swiss Light Source, which satisfies the three

key requirements of monochromaticity, photon-energy range

and focus size to succeed.

The experimental configuration is sketched in Fig. 6(a). The

perfectly collimated incoming beam was first sent through the

microXAS Si(311) two-bounce monochromator, which sets

the relative bandwidth to values of the order of the Darwin

width of the diamond reflections under study. The beam was

then focused vertically and horizontally by two bendable

Kirkpatrick–Baez (KB) mirrors to a spot size of 1.5 (v) � 10

(h) mm FWHM at 100 mm distance downstream of the mirror

box exit window. The vertical focus size was determined by

scanning a sharp edge in the vertical direction and evaluating

the sharpness of the step of the transmitted intensity in the

forward direction. The vertical divergence of the focused

beam was reduced as much as possible by closing the vertical

slits upstream of the KB mirror box until just before the

focused beam spot is disturbed markedly. This reduces the

area in the DuMond diagram not involved in diffraction. From

the slit aperture of about 30 mm and the distance between the

vertically focusing KB mirror and the focus of 280 mm, the

divergence of the incoming beam is estimated to be about

10�4, i.e. about a factor of 3 times larger than in the Gaussian

beams with the same focus size used in the simulations.

An individual diamond single crystal was mounted on a

rotation stage with the horizontal rotation axis intersecting the

sample and perpendicular to the beam direction. An example

crystal mount is shown in Fig. 6(b). The rotation angle could

be controlled with a precision of 0.0005�. The whole rotation

stage could be moved vertically and horizontally in order to

get the beam onto the diamond, and along the beam direction

to place the sample about 60 mm upstream of the focal point.

At the focal position, a crystal scintillator was placed with the

surface perpendicular to the beam direction and imaged with

20-fold magnification onto a pco.2000 camera with pixels of

7.4 mm size, giving thus a theoretical resolution of 0.37 mm.

The intensity of the beam diffracted by the diamond was

measured using a diode as point detector, which could be

moved in the vertical diffraction plane to a suitable position to

intercept the diffracted beam.

3.3. Data collection

For the measurements, the photon energy was first set with

the monochromator to a reference value and an angular

rocking scan [red path in Fig. 2(a)] was performed to deter-

mine the incidence angle at which the sample was in the

diffraction condition. The reflectivity curve of these rocking

scans was collected using the point detector located at the

expected Bragg angle, as shown in Fig. 6(a). Implicit in this

procedure is that we targeted only reflections with vertical

diffraction geometry with � polarization. Once the exact angle

for the reference photon energy was set, an energy scan [cyan

path in Fig. 2(a)] with steps of 0.5 eV over an energy range of

�6 eV was performed. For each energy point in the scan, ten

subsequent images, each of 0.1 s exposure, were recorded with

the forward area detector to avoid saturation. The ten images

were then added up to obtain a single image. For each energy
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Figure 5
(a) Simulated reflectivity curve IRð�kÞ for the (220) reflection in
symmetric Laue geometry of a 100 mm-thick diamond single crystal at
12 keV. (b) Transverse echo signals SðxÞ at the five points along the
reflectivity curve shown in (a). The energy deviation from the maximum
diffraction condition is indicated. The blue dots are the data extracted
from the simulated images, while the red curves are the modelled
Gaussian multi-peak function [equation (11)]. (c) Same as (b) for the on-
diffraction condition point (3) but in vertical logarithmic scale. The
positions of the direct-beam hump (0th-order echo) and of the transverse
echoes are indicated.



step, the diffracted beam intensity was measured simulta-

neously with the point detector. Systematic measurements at

10 and 12 keV were attempted with each crystal for the

lowest-order reflection parallel to the surface normal

(symmetric Bragg geometry), and for the lowest-order

reflection parallel to the surface normal and to the crystal

edges (symmetric Laue geometry).

4. Results

Fig. 7 shows results obtained from an energy scan at 12 keV

with the C400mm (110) crystal; the reflection presented is the

(220) reflection in symmetric Bragg geometry, which corre-

sponds to the first simulation described in x2.2. Panel (a)

shows the measured reflectivity curve IR, which allows

discrimination between the off- and on-diffraction conditions.

Panels (b) and (c) display the image of the transmitted beam

for the off- and on-diffraction conditions, respectively. The

intensity humps in the vertical direction appear only in the

latter case, in agreement with the simulation results shown in

Figs. 3(d) and (e).

Fig. 8 displays the experimental echo signals SðxÞ for five

energy scan points, calculated by horizontal y projection of the

transmitted beam images in a 10 mm-wide strip onto the

vertical axis x. These signals are the analogues of the intensity

projections obtained with equation (10) from the simulated

transmitted beam images.

Again, in analogy to the fitting procedure for the simulated

data based on equation (11), the echo signals were modelled

with the function
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Figure 6
(a) Schematic representation of the experimental setup implemented at the microXAS beamline. (b) Picture of sample C400mm (110) mounted in the
sample holder. The rotation axis is in the y direction.

Figure 7
(a) Experimental reflectivity curve IRð�kÞ collected for the (220) reflection at 12 keV in symmetric Bragg geometry with the 400 mm-thick diamond
crystal. (b), (c) Intensity images collected with the detector placed at the vertical focus position of the incident beam for (b) a photon energy of 3 eV
below the perfect Bragg condition, corresponding to point (1) in panel (a), and for (c) a photon energy centred perfectly at the Bragg condition,
corresponding to point (3) in panel (a).



Sfit
LorentzðxÞ ¼

XNe

i¼0

Ai

!i

1

1þ ½ðx� xiÞ
2=!2

i �
þ Cbg: ð12Þ

Instead of Gaussians, Lorentzian peak shapes were used to

account for the broader peak base, observed even without a

crystal placed in the beam. A constant Cbg was added to

account for the overall background in the experimental

images. The variations of Cbg between different energies were

less than 1% of the amplitude of the signal at the off-

diffraction condition and are therefore irrelevant.

For the off-diffraction condition points (1) and (5), the echo

could be fitted with a single peak (0th-order echo) at fixed

position x0 ¼ 0 mm and FWHM 2!0 ¼ 3:13 mm, which

exceeds the expected value of 1.5 mm from the knife-edge scan

by about 1.6 mm. We attribute this discrepancy to broadening

originating from the thickness of the scintillator crystal and

possible aberrations in the optical elements of the camera. The

agreement between the data and the fits is good, except for the

weaker side lobes shown in Fig. 8(b) for the energy point (5).

These lobes are most likely to result from diffraction from the

beam-defining slits upstream of the focusing mirrors and

cannot be modelled easily.

To model the echo signal for the on-Bragg energy points (2–

4), seven additional echoes (i = 1–7) were considered in

equation (12) and a protocol similar to that used for the
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Figure 8
(a) Transverse echo signals SðxÞ at the five points along the reflectivity
curve of Fig. 7(a). The energy deviation from the maximal diffraction
condition is indicated. The blue dots are the data extracted from the
experimental images [see examples in Figs. 7(b), (c)], while the red curves
are the modelled Lorentz multi-peak function [equation (12)]. (b) Same
as (a) for the off-Bragg condition point (1) and for the on-Bragg
condition point (3) but in vertical logarithmic scale. The position of the
direct-beam hump (0th-order echo) and of the transverse echoes is
indicated.

Figure 9
Energy dependence of the integrated echo intensity corresponding to the
data of Figs. 7 and 8. The blue circles are the values obtained from the
experimental data, while the red squares are from the simulations. The
intensities Ai of the direct beam (i ¼ 0) and of the first three echoes (i =
1–3) are obtained by modelling the data with the multi-peak functions
[equations (11) and (12)], and are shown as a function of the energy
difference c�k with respect to the maximal diffraction condition.



simulation was applied. The modelled functions are shown as

red curves in Fig. 8 and reproduce reasonably well the

experimental data points, as is shown in particular in the

logarithmic presentation of Fig. 8(b) for the energy point (3).

The fitting parameters for the off-diffraction energy point (1)

and for the on-diffraction energy point (3) are reported in

Table 1 (right). The echo displacements agree extremely well

with the values predicted by the simulations, while the

FWHMs appear to be larger by 1.6 to 2.0 mm. The constant

part of this broadening is attributed, as for the off-Bragg point,

to the imperfection of the imaging system. The remaining part

of the broadening, which is most pronounced at the lowest

echo orders, is most likely due to the fact that the real X-ray

beam is far from being an ideal Gaussian beam. This means

that the phases of the Fourier space components of the

incoming and transmitted beams in equation (6) are scram-

bled, which typically results in broadening of the real-space

intensity pattern at the beam waist.

Fig. 9 compares the experimental and simulated intensities

of the direct beam (0th-order echo) and the first three trans-

verse echoes as a function of photon energy. The overall trend

of both signals is the same. The transmitted beam intensity is

minimal for maximal diffraction (�k ¼ 0). The intensity of the

echoes has a symmetric two-hump profile. The distance

between the humps decreases with increasing order i of the

echo. For example, for i ¼ 1 the hump separation is about

3.0 eV, for i ¼ 2 it is about 1.6 eV, while for i ¼ 3 the two

humps are not visible anymore.

Figs. 10 and 11 as well as Table 2 (right) are the equivalent

of Figs. 8 and 9 and Table 1 (right) for the measurements

performed with the C100mm (100) crystal on the (022) reflection

in symmetric Laue geometry. This corresponds to the second
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Figure 11
Same as Fig. 9 but for the (022) reflection in symmetric Laue geometry of
a 100 mm-thick diamond crystal at 12 keV.

Figure 10
Same as Fig. 8 but for the (022) reflection in symmetric Laue geometry of
a 100 mm-thick diamond crystal at 12 keV.



simulation described in x2.2. An example of transmitted beam

images is shown in Fig. S3 in the supporting information. The

data acquisition and analysis procedure was the same as for

the Bragg geometry case above. Because the humps are hard

to identify in the experimental echo signals but the overall

signals are similar to those from the simulations (Fig. 10c), the

modelling was done with echoes placed at the same positions

as in the simulations before fitting. Overall, the modelling of

the experimental and simulated echo signals gives a consistent

outcome, even though the agreement is less remarkable if

compared to the Bragg case.

In all, during the beamtime we attempted to collect data in

both Bragg and Laue symmetric geometries at 10 and 12 keV

on the two thicker crystals C400mm (110) and C500mm (100), and

at 12 keV only on the thin crystal C100mm (100). In the Bragg

case, all five measurements were successful, where success

means that at least the first two displaced echo peaks could be

clearly identified and reasonably modelled with equation (12).

In more detail, the measurements were successful with the

C400mm (110) crystal on the (220) reflection at 12 keV (see the

data presented above) and 10 keV (�B = 29.44�), with the

C500mm (100) crystal on the (400) reflection at 12 and 10 keV

(�B = 35.40� and �B = 44.04�, respectively), and with the C100mm

(100) crystal at 12 keV on the reflection (400). In the Laue

case, only one of the five measurements was successful, namely

that with the thinner C100mm (100) crystal at 12 keV on the

(022) reflection (see the data presented above). The exhaus-

tive comparison of the peak positions derived from the

simulated and experimental echo signals is the subject of

Fig. 12, which demonstrates that for all measured reflections

the corresponding echo positions are well correlated. The

correlation is particularly good for the C100mm (100) and C500mm

(100) sample in the Bragg case. Regarding the Laue case, we

remark that setting the crystal in the right orientation for

diffraction is much more challenging than in the Bragg case,

because of the additional degree of freedom represented by

in-plane rotations of the crystals which was hard to control.

This explains both the fact that most attempts in Laue

geometry were unsuccessful, because of the difficulty of

properly orienting the crystal in the diffraction condition, and

the fact that in the sole successful Laue measurement the

echo-position correlation is worse than that in Bragg

geometry, given that even a small asymmetry has a remarkable

effect on the echo position (simulations not shown here).

5. Discussion

Experiments on FBD by a thin crystal were performed

decades ago to study the Pendellösung effect [in Bragg

gemetry by Kato & Lang (1959) and in Laue geometry by

Batterman & Hildebrandt (1968)], which consists of oscilla-

tions of the transmitted-beam intensity upon small variations

of the incidence angle or wavelength of the incoming plane

wave. These are far-field experiments, for which the X-ray

intensity is detected as a function of the propagation angle, i.e.

as jETðk; �Þj
2
¼ jTðk; �ÞEIðk; �Þj

2. Analogous studies were

also done on the diffracted beam (Mocella et al., 2000). In

contrast, the generation by FBD of echoes is a near-field

phenomenon, and involves interference of plane waves of

different photon energies and/or different incidence angles.

As mentioned in x1, this phenomenon has been investigated

deeply from the theoretical point of view in recent years, in

relation to the X-ray self-seeding possibilities at XFEL facil-

ities. Indirect experimental evidence for the retardation of

temporal echoes is given by the fact that self-seeding at an

XFEL has been implemented, while for the transverse spatial

displacement the hints come from the fact that the trajectory

of the electron beam in the downstream undulator section has

to be adjusted correspondingly.

The results reported in this article represent the first direct

evidence of the echoes. The success of the experiment relies

on two key points. First, at the microXAS beamline it was

possible to achieve a focus size of 1–2 mm, which is suitable for

direct visualization of the echoes at the focal plane of the

incident beam. In parallel, by using microXAS it was also

possible to minimize the incident-beam divergence and

therefore minimize the fraction of photons not involved in the

diffraction process that are transmitted into the 0th-order

echo hump. Second, because the longitudinal position of the

crystal upstream of the imaging plane is not critical, it was

possible to physically separate the position of the area

detector, set at the focal plane, from the position of the crystal,

mounted on the bulky rotation stage placed upstream of the

focus. To support this concept, we recorded images of the

transmitted beam at focus with the crystal set to the Bragg
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Figure 12
Comparison of transverse echo displacements from experiment and
simulations. Each data point is related to the displacement xi of a certain
echo at the maximum diffraction condition determined from the
experimental data (horizontal axis) and from the simulations (vertical
axis). Each colour is for a specific crystal, photon energy and geometry,
indicated in the plots. The lines represent the best linear correlation and
follow the same colour coding. The slope values are given in the legend.



condition at three distances, differing by 10 mm, upstream of

the focus, and established that the three images were practi-

cally the same, showing identical position and similar inten-

sities for each of the echoes in the different crystal locations

(see Fig. S4 in the supporting information).

The echo signals extracted from the experimental images

measured at the focal position are in good agreement with

those generated using the simulation tool, leaving no doubts as

to the fact that real echoes were effectively observed and

providing indirect evidence that equation (8) is fulfilled in

practice. Minor quantitative discrepancies are attributed to

the difficulties in modelling the details of the experimental

beam shape. The simulation tool was developed with the

precise aim of handling an incident X-ray pulse of chosen

temporal and spatial shape, and will serve for future studies

related to self-seeding.

Direct visualization of the echoes in the time domain cannot

be done at a synchrotron source, because it requires femto-

second resolution. The combination of tight focusing with a

Si3N4 screen placed at the focus, in the configuration of a

timing tool as presented by Harmand et al. (2013), and with

the time dimension orthogonal to the echo displacement

direction could make it possible to determine the fine delay of

the echoes. This experimental arrangement would also be

suited to exploiting the strict correlation of the time delay and

spatial displacement of the echoes to study the dynamics of

strain relaxation in thin crystals of silicon, as induced by short

laser pulses.

Since the shape of the echo signal is very characteristic for a

given crystal thickness and reflection, one could consider

exploiting the echoes as an online diagnostics tool in a self-

seeding module based on the design of Geloni et al. (2010). For

practical implementation, two problems have nevertheless to

be addressed. First, most of the SASE beam does not contri-

bute to the echoes, but rather its high intensity is an obstacle to

proper identification and quantification of the echo signal.

Second, the transversal displacement of the echoes of the

order of a few mm means the incoming beam needs to be

focused to a size which is of the same order. An XFEL beam

waist is typically much larger. A possibility would be to insert a

grating of a few mm upstream of the seeding crystal to

generate a weak secondary beam with small horizontal

deflection, such that it hits the seeding crystal with almost the

same direction as the direct beam. This secondary beam would

then be refocused onto a screen to make the echoes visible.

Adding a monochromator crystal to the secondary beam

would in addition suppress the direct beam on the screen.

6. Summary

We have reported the first experimental observation of

transversely displaced echoes generated via forward Bragg

diffraction of an X-ray beam propagating through a perfect

thin crystal. The agreement of the experimental echo signal

with that obtained from simulations relying on the dynamical

diffraction theory is very good. This paves the way for the

imaging of the echoes as a tool to diagnose forward-diffracted

beams as applied in self-seeding modules or to study temporal

strain effects in thin perfect crystals.
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