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Crystal structure solutions from thin films are often performed by grazing-

incidence X-ray diffraction (GIXD) experiments. In particular, on isotropic

substrates the thin film crystallites grow in a fibre texture showing a well defined

crystallographic plane oriented parallel to the substrate surface with random in-

plane order of the microcrystallites forming the film. In the present work,

analytical mathematical expressions are derived for indexing experimental

diffraction patterns, a highly challenging task which hitherto mainly relied on

trial-and-error approaches. The six lattice constants a, b, c, �, � and � of the

crystallographic unit cell are thereby determined, as well as the rotation

parameters due to the unknown preferred orientation of the crystals with

respect to the substrate surface. The mathematical analysis exploits a

combination of GIXD data and information acquired by the specular X-ray

diffraction. The presence of a sole specular diffraction peak series reveals fibre-

textured growth with a crystallographic plane parallel to the substrate, which

allows establishment of the Miller indices u, v and w as the rotation parameters.

Mathematical expressions are derived which reduce the system of unknown

parameters from the three- to the two-dimensional space. Thus, in the first part

of the indexing routine, the integers u and v as well as the Laue indices h and k of

the experimentally observed diffraction peaks are assigned by systematically

varying the integer variables, and by calculating the three lattice parameters a, b

and �. Because of the symmetry of the derived equations, determining the

missing parameters then becomes feasible: (i) w of the surface parallel plane, (ii)

the Laue indices l of the diffraction peak and (iii) analogously the lattice

constants c, � and ß. In a subsequent step, the reduced unit-cell geometry can be

identified. Finally, the methodology is demonstrated by application to an

example, indexing the diffraction pattern of a thin film of the organic

semiconductor pentacenequinone grown on the (0001) surface of highly

oriented pyrolytic graphite. The preferred orientation of the crystallites, the

lattice constants of the triclinic unit cell and finally, by molecular modelling, the

full crystal structure solution of the as-yet-unknown polymorph of pentacene-

quinone are determined.

1. Introduction

The appearance of unknown polymorphs within organic thin

films is a well known phenomenon which attracts considerable

interest in organic electronics and pharmaceutical science

(Jones et al., 2016). Frequently used terms for this type of

polymorph include substrate-induced phases, substrate-

mediated phases or thin film phases (Bouchoms et al., 1999;

Schiefer et al., 2007; Ehmann & Werzer, 2014). The presence

of an isotropic substrate surface during the crystallization

process can induce new types of molecular packing, because
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the substrate acts as a template for the crystallization process.

Substrates on which such new polymorphs tend to grow

typically exhibit a highly flat surface like oxidized silicon

wafers, glass plates or polymer surfaces. There, the deposited

organic material crystallizes with a strong preferred orienta-

tion showing a well defined crystallographic plane (the so-

called contact, or texture plane) parallel to the substrate

surface. However, no azimuthal (i.e. in-plane) order between

the microcrystallites forming such films is observed due to the

isotropic nature of the substrate surfaces. This type of crys-

talline orientation is called uniplanar texture (Heffelfinger &

Burton, 1960) or fibre texture (Roe & Krigbaum, 1964).

Crystal structure solutions for such thin films are typically

performed by grazing-incidence X-ray diffraction (GIXD); the

experimental geometry is schematically shown in Fig. 1(a).

The primary X-ray beam with the wavevector k0 and the

scattered X-ray beam with the wavevector k determine the

scattering vector q by q = k � k0. According to the Laue

equation, diffraction occurs if the scattering vector q is equal

to a reciprocal-lattice vector g. For organic crystallites in fibre-

textured films, the reciprocal-lattice points lie on concentric

circles, as illustrated by red circles in Fig. 1(b). Keeping the

sample fixed in space, a GIXD experiment then equals a cut

through the three-dimensional reciprocal space, roughly

perpendicular to the rings of reciprocal-lattice points, and a

corresponding two-dimensional reciprocal-space map is

obtained [compare Fig. 1(b)]. Note that for thin films with

defined in-plane alignment of the crystallites [e.g. if grown on

anisotropic substrates like graphene (Salzmann et al., 2012)] or

for samples with weak statistics, the system can be artificially

reduced to a fibre texture simply by a 360� rotation around the

substrate normal (Röthel, 2017).

Crystal structure solutions from GIXD require the indexing

of the diffraction pattern, that is, the assignment of Laue

indices to the observed Bragg peaks. In our specific case of

GIXD on fibre-textured films, two components of the

reciprocal-lattice vectors – namely qz and qxy – are available

for the indexing process (Smilgies & Blasini, 2007; Hailey et al.,

2014). This is considerably different to the indexing procedure

employed for single-crystal diffraction patterns, where all

three components of reciprocal-lattice vectors are recorded, as

well as for powder diffraction of polycrystalline materials,

where only the lengths of the scattering vectors are detected.

In the case of single-crystal diffraction, three linearly inde-

pendent reciprocal-lattice vectors are required to span the

reciprocal lattice. Any other experimentally determined

reciprocal-lattice vector has then to fit into this specific reci-

procal lattice. Since complete three-dimensional vectors are

used, even indexing of configurations with multiple lattices can

be successfully achieved (Jacobson, 1976; Powell, 1999; Breiby

et al., 2008; Gildea et al., 2014; Dejoie et al., 2015; Morawiec,

2017). In the case of powder diffraction, only the lengths of the

reciprocal-space vectors are used and the unknown variables

are then up to six unit-cell parameters (in the case of a triclinic

system) and a set of Laue indices with a triple of three integer

values each. This problem cannot be solved algebraically. One

possibility, however, is the dichotomy method where the cell

constants are varied in increasingly smaller intervals and the

hkl indices are subsequently refined using the least-square

method (Boultif & Louër, 1991, 2004). For simplification of

the indexing process, boundary conditions can be imposed.

Few programs have yet been developed for the indexing of

two-dimensional reciprocal-space maps (Smilgies & Blasini,

2007; Breiby et al., 2008; Hailey et al., 2014; Jiang, 2015).

Certainly, the situation is relatively trivial if all lattice para-

meters are known. However, for a successful indexing it is still

necessary to determine the contact plane of the investigated

crystals in fibre-textured films. For this reason, the rotation

matrix of the thin film crystallites relative to the substrate

surface has to be considered (Shmueli, 2006). If the lattice

parameters are, however, unknown, both the lattice constants

and the rotation matrix need to be determined, which repre-

sents a significantly more challenging task. Present approaches

for the indexing of such systems are mainly based on trial and

error, which is clearly unsatisfactory for obvious reasons.

Here, we demonstrate the analytical derivation of mathe-

matical expressions to be employed in the indexing of two-

dimensional reciprocal-space maps. To this end, we use two

components of the reciprocal-space vectors, the in-plane part

qxy and the out-of-plane part qz. A further input parameter for

the indexing arises from specular X-ray diffraction experi-

ments, as in essentially all cases of crystalline organic thin films

grown in a fibre texture one defined Bragg peak (or one Bragg

peak series) is observed at qspec, originating from the plane

normal to the fibre axis of the film. This peak (series) is due to

diffraction from the contact plane of the fibre-textured film,

which is assigned to a crystallographic plane of Miller indices

u, v and w (Salzmann & Resel, 2004; Smilgies & Blasini, 2007;

Hailey et al., 2014; Jiang, 2015). By combining the peak posi-
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Figure 1
(a) Geometry of a grazing-incidence X-ray diffraction (GIXD) experi-
ment with k0 and k representing the wavevectors of the primary and of
the scattered X-ray beam, respectively, together with the corresponding
angle of incidence �i, the in-plane scattering angle �f and the out-of-plane
scattering angle �f. The corresponding scattering vector q is split into an
in-plane part qxy and an out-of-plane part qz. (b) A reciprocal-space map
measured in GIXD geometry plotted as a function of qxy and qz using a
colour code for the measured intensity. The reciprocal-lattice points of
the thin film crystallites grown in a fibre texture with a fibre axis oriented
in the z direction degenerate to concentric rings around that axis.



tions in the GIXD pattern (qxy, qz) with the specular peak

(qspec), the required number of unknown parameters for

indexing significantly reduces.

If all three components of the scattering vectors are

measured, the orientation of the crystal has to be considered

by including the rotation parameters. Though the number of

equations is smaller than the number of unknowns, the

analytical treatment is much more straightforward since it is

purely based on linear equations (see Appendix E).

2. Methods

For the following mathematical treatise a laboratory coordi-

nate system with the xy plane being parallel to the substrate

surface is assumed.

2.1. Non-rotated case – contact plane (001)

In the following analysis, a, b, c, �, � and � are the para-

meters of the (direct) unit cell, and a*, b*, c*, �*, �* and �* are

the reciprocal cell parameters (Giacovazzo, 2011), which are

summarized in Table 1.

If the (001) lattice plane is parallel to the substrate surface

in a GIXD experiment, the reciprocal-lattice vector g with its

Laue indices h, k and l can be represented by the equation

g ¼

gx

gy

gz

0
@

1
A ¼ A�001

h

k

l

0
@

1
A; ð1Þ

where the matrix A�001 is given as

A�001 ¼

a� sin �� sin � 0 0

�a� sin �� cos � b� sin �� 0

a� cos �� b� cos�� c�

0
@

1
A: ð2Þ

When the Laue condition q = g is fulfilled, diffraction can be

observed.

In the real space, A001 characterizes the matrix of the lattice

vectors a0, b0 and c0, which is in the non-rotated system given

by

A001 ¼

a0

b0

c0

0
@

1
A ¼ a 0 0

b cos � b sin � 0

c cos � �c sin � cos �� c sin� sin ��

0
@

1
A:
ð3Þ

Equations (2) and (3) are connected via

A001 ¼ 2�A�001
�1: ð4Þ

The volume V of the unit cell can be calculated by

V ¼ det A001ð Þ ¼ abc sin �� sin � sin �: ð5Þ

Using equation (1) and the relations given in Table 1, the in-

and out-of-plane components of the reciprocal vector g can be

explicitly written as

g2
xy ¼ g2

x þ g2
y ¼ h2z2

a þ k2z2
b � 2hkzazb cos �; ð6Þ

gz ¼ ha� cos ��þkb� cos�� þ lc�; ð7Þ

with za ¼ 2�=ða sin �Þ and zb ¼ 2�=ðb sin �Þ. From equation

(6) the unit-cell parameters which are oriented in-plane,

namely a, b and �, can be determined; in further consequence

equation (7) leads to parameters c, � and �. The integer

variables of the Laue indices have to be varied and the values

of qxy and qz from three independent Bragg peak series are

required to obtain a solution for the corresponding unit-cell

parameters, which have to be checked if proper Laue indices

can be obtained for all measured diffraction peaks (Truger et

al., 2016).
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Table 1
Relations between the parameters of the direct lattice (a, b, c, �, �, �) and of the reciprocal lattice (a*, b*, c*, �*, �*, �*) and the volume of the
crystallographic unit cell V.

a� ¼
2�bc sin �

V
cos�� ¼

cos� cos � � cos�

sin � sin �
sin �� ¼

V

abc sin � sin �

b� ¼
2�ac sin �

V
cos�� ¼

cos� cos � � cos�

sin � sin �
sin �� ¼

V

abc sin � sin �

c� ¼
2�ab sin �

V
cos �� ¼

cos� cos�� cos �

sin � sin �
sin �� ¼

V

abc sin � sin �

V ¼ abcð1� cos2�� cos2�� cos2� þ 2 cos � cos � cos �Þ1=2
¼ abc sin �� sin � sin �

cos� ¼
cos�� cos �� � cos ��

sin �� sin ��
cos � ¼

cos �� cos �� � cos��

sin �� sin ��
cos � ¼

cos �� cos�� � cos ��

sin �� sin ��



2.2. Rotated case – contact plane (uvw)

Obviously, the situation becomes more complex if the (001)

lattice plane is not parallel to the substrate surface as the

matrix A�001 has now to be transformed. In particular, it has to

be rotated around the zone axis which is defined by the (001)

plane (characterized by its normal vector r1) and the new

contact plane (uvw), as characterized by its normal vector r2.

A graphical sketch of the discussed geometry is presented in

Fig. 2.

It can easily be proven that an arbitrary rotation of the

lattice vectors in the real space corresponds to an identical

rotation of the reciprocal-space vectors. If R is an arbitrarily

chosen rotation matrix acting on the lattice vectors and R�1 =

RT is its inverse, the following relation can be deduced from

equation (4):

R

a0

b0

c0

0
B@

1
CA

T

¼ RAT
001 ¼ A001RT

� �T
¼ 2� A�001

�1
RT

� �T

¼ 2� ðRA�001Þ
�1

� �T
: ð8Þ

Therefore, equation (4) can be generalized and written in the

form

A ¼

a

b

c

0
@

1
A ¼ 2�A��1; ð9Þ

where a = Ra0, b = Rb0 and c = Rc0 are the rotated lattice

vectors and A� ¼ RA�001.

Based on the graphical representation it can be shown that

the unit vector n of the zone axis is calculated by the vector

product of r1 and r2:

r1 ¼ A�001

0

0

1

0
@

1
A; ð10Þ

r2 ¼ A�001

u

v

w

0
@

1
A; ð11Þ

n ¼

n1

n2

n3

0
@

1
A ¼ r1 � r2

r1 � r2

�� �� : ð12Þ

The angle of rotation � is obtained by the scalar product

cos � ¼
r1 � r2

r1

�� �� r2

�� �� : ð13Þ

The matrix R, which describes a rotation by � around the

axis n, is given by (Shmueli, 2006)

R ¼

n2
1ð1� cos �Þ þ cos � n1n2ð1� cos �Þ þ n3 sin � n1n3ð1� cos �Þ � n2 sin �

n1n2ð1� cos �Þ � n3 sin � n2
2ð1� cos �Þ þ cos � n2n3ð1� cos �Þ þ n1 sin �

n1n3ð1� cos �Þ þ n2 sin � n2n3ð1� cos �Þ � n1 sin � n2
3ð1� cos �Þ þ cos �

0
B@

1
CA:
ð14Þ

Combining equations (10) to (12) yields the components of the

zone axis unit vector n:

n1 ¼
uza cos � � vzb

ðu2z2
a þ v

2
z2

b � 2uvzazb cos �Þ1=2
; ð15Þ

n2 ¼
uza sin �

ðu2z2
a þ v

2
z2

b � 2uvzazb cos �Þ1=2
; ð16Þ

n3 ¼ 0, which results in the condition n2
1 þ n2

2 ¼ 1. In a next

step the angle of rotation � can be obtained by combining

equations (10), (11) and (13) as

cos � ¼ ðua� cos �� þ vb� cos�� þ wc�Þ

=½u2z2
a þ v2z2

b � 2uvzazb cos �

þ ðua� cos �� þ vb� cos�� þ wc�Þ
2
�
1=2: ð17Þ

Finally, the reciprocal-lattice vector g can be written as

g ¼ RA�001

h

k

l

0
@

1
A ¼ A�uvw

h

k

l

0
@

1
A: ð18Þ

From equation (18), the following expressions for the radius

gxyz ¼ ðg
2
x þ g2

y þ g2
zÞ

1=2 and the out-of-plane part gz of the

reciprocal-lattice vector can be derived:

g2
xyz ¼ h2z2

a þ k2z2
b � 2hkzazb cos �

þ ðha� cos �� þ kb� cos�� þ lc�Þ
2; ð19Þ

gz ¼ ½huz2
a þ kvz2

b � ðhvþ kuÞzazb cos �

þ ðua� cos �� þ vb� cos�� þ wc�Þ

� ðha� cos �� þ kb� cos�� þ lc�Þ�

=½u2z2
a þ v2z2

b � 2uvzazb cos �

þ ðua� cos �� þ vb� cos�� þ wc�Þ
2
�
1=2:

ð20Þ

If the condition h ¼ u, k ¼ v and l ¼ w is fulfilled, equations

(19) and (20) are identical, which means that there is only a

contribution from the out-of-plane part gz, whereas the in-

plane part gxy is zero. This is valid for the specular scan gspec,

which is exactly sensitive to the lattice plane parallel to the

surface, and therefore can be explicitly written as
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Figure 2
Sketch of a triclinic crystal cell oriented with its (001) net plane parallel to
the xy plane. For studying more general orientations with, e.g., a (�1�10)
contact plane, all planes and vectors have to be rotated around the zone
axis [1�10] by the angle �. The zone axis is defined by the vector n, being
orthogonal to r1 and r2. As visualized in the right part of the figure,
lattice planes as well as crystallographic directions follow this transfor-
mation.



gspec ¼ ½u
2z2

a þ v
2
z2

b � 2uvzazb cos �

þ ðua� cos �� þ vb� cos�� þ wc�Þ
2
�
1=2: ð21Þ

From equations (19) to (21) and by including equation (5),

the following expression for the in-plane part gxy can be

derived:

g2
xyg2

specV2 1

ð2�Þ4

¼ ðkw � lvÞ
2
a2
þ ðhw� luÞ

2
b2

þ ðhv� kuÞ
2
c2 þ 2ðku� hvÞðhw� luÞbc cos �

þ 2ðhv� kuÞðkw� lvÞac cos �

þ 2ðhw� luÞðlv� kwÞab cos �: ð22Þ

Furthermore, using equations (20) and (21), equation (19) can

be rewritten as

g2
xyz ¼ h2z2

a þ k2z2
b � 2hkzazb cos �

þ
fgzgspec � ½huz2

a þ kvz2
b � ðhvþ kuÞzazb cos ��g

2

g2
spec � ðu

2z2
a þ v

2
z2

b � 2uvzazb cos �Þ

ð23Þ

and by algebraic transformations the following expression can

be derived:

g2
xyg2

spec ¼ z2
a½u

2g2
xy þ ðhgspec � ugzÞ

2
� þ z2

b½v
2g2

xy þ ðkgspec � vgzÞ
2
�

� 2zazb cos �½uvg2
xy þ ðhgspec � ugzÞðkgspec � vgzÞ�

� ðhv� kuÞ2z2
az2

b sin2 �: ð24Þ

Equation (24) can be regarded as a generalization of equation

(6), additionally including the two rotational integer para-

meters u and v, the specular scan gspec and the out-of-plane
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Table 2
Relations for the total length gxyz, the out-of-plane part gz and the in-plane part gxy of the reciprocal-space vectors with indices hkl and of the vector uvw
(gspec) by using direct- and reciprocal-lattice parameters and the volume V.

g2
xyz ¼ g

2

x
þ g2

y þ g2
z ¼ h2a�2 þ k2b�2 þ l2c�2 þ 2hka�b� cos �� þ 2hla�c� cos�� þ 2klb�c� cos��

gzgspec ¼ hua�2 þ kvb�2 þ lwc�2 þ ðhvþ kuÞa�b� cos �� þ ðhwþ luÞa�c� cos �� þ ðkwþ lvÞb�c� cos ��

gspec ¼ ðu
2a�2 þ v2b�2 þ w2c�2 þ 2uva�b� cos �� þ 2uwa�c� cos �� þ 2vwb�c� cos ��Þ1=2

g2
xyg2

specV2 1

ð2�Þ4
¼ ðkw� lvÞ

2
a2
þ ðhw� luÞ

2
b2
þ ðhv� kuÞ

2
c2
þ 2ðku� hvÞðhw� luÞbc cos�

þ 2ðhv� kuÞðkw� lvÞac cos�þ 2ðhw� luÞðlv� kwÞab cos �

g2
xy ¼

2�

a sin �

� �2

h� u
gz

gspec

 !2

þ u
gxy

gspec

 !2" #
þ

2�

b sin �

� �2

k� v
gz

gspec

 !2

þ v
gxy

gspec

 !2" #

� 2
2�

a sin �

2�

b sin �
cos � h� u

gz

gspec

 !
k� v

gz

gspec

 !
þ uv

gxy

gspec

 !2" #
�
ðhv� kuÞ

2

g2
spec

2�

a sin �

� �2
2�

b sin �

� �2

sin2�

g2
xy ¼

2�

a sin�

� �2

h� u
gz

gspec

 !2

þ u
gxy

gspec

 !2" #
þ

2�

c sin �

� �2

l � w
gz

gspec

 !2

þ w
gxy

gspec

 !2" #

� 2
2�

a sin �

2�

c sin�
cos � h� u

gz

gspec

 !
l � w

gz

gspec

 !
þ uw

gxy

gspec

 !2" #
�
ðhw� luÞ

2

g2
spec

2�

a sin�

� �2
2�

c sin�

� �2

sin2�

g2
xy ¼

2�

b sin �

� �2

k� v
gz

gspec

 !2

þ v
gxy

gspec

 !2" #
þ

2�

c sin �

� �2

l � w
gz

gspec

 !2

þ w
gxy

gspec

 !2" #

� 2
2�

b sin�

2�

c sin�
cos� k� v

gz

gspec

 !
l � w

gz

gspec

 !
þ vw

gxy

gspec

 !2" #
�
ðkw� lvÞ

2

g2
spec

2�

b sin �

� �2
2�

c sin�

� �2

sin2�



part gz. For u = v = 0 it reduces to equation (6) in the non-

rotated case.

Equation (24) comprises – in addition to the rotation

parameters u and v – only the lattice parameters a, b, � and the

Laue indices h and k. This facilitates the mathematical

analysis, where the integer variables can be varied and only

three real unknowns have to be calculated. Therefore, we note

that when indexing GIXD patterns, the acquisition of a

specular scan is of considerable help.

In rare cases, net planes oriented parallel to the substrate

surface are characterized by a weak structure factor which

inhibits the acquisition of a specular scan (Djuric et al., 2012).

In such cases u and v must be assumed to be real (instead of

integer) numbers which makes the mathematical analysis

more exhaustive and an alternative notation of the rotation

matrix may be chosen (see Appendix A).

In Table 2 we provide a summary of the derived equations

and further analogous expressions due to symmetry relation-

ships.

As the Laue indices are integers, they can be systematically

varied, whereas the real unknown parameters a, b and � can

be calculated from the qxy and qz values of three independent

Bragg peak series. This can be achieved analytically by

employing proper mathematical substitutions to obtain linear

equations (see Appendix B).

For calculating the remaining cell parameters from equa-

tions (20) and (21) the following expression can be derived:

ha� cos �� þ kb� cos �� þ lc�

¼
gzgspec � huz2

a � kvz2
b þ ðhvþ kuÞzazb cos �

ðg2
spec � u2z2

a � v
2
z2

b þ 2uvzazb cos �Þ1=2
: ð25Þ

Equation (25) can be regarded as a generalization of equation

(7) to which it reduces for u = v = 0 in the non-rotated case.

Alternatively, by using the symmetry expressions in Table 2

the parameter sets {a, c, �, u, w} and {b, c, �, v, w} can be

determined in an analogous manner as {a, b, �, u, v}.

If one component of the zone axis, which is the intersection

of the planes (uvw) and (hkl), is zero, compact expressions for

the reciprocal cell parameters a*, b*and c* can be derived (see

Appendix C).

3. Discussion – determining the reduced cell

As discussed by Niggli, the reduced cell is defined by the cell

that satisfies the conditions derived from the reduction theory

of quadratic forms (Niggli, 1928). Such a cell provides a

unique description of the lattice and is characterized inde-

pendently of lattice symmetry. The main conditions for

reduction require that the unit cell is based on the three

shortest vectors of the lattice; such a unit cell is then called a

Buerger cell (Buerger, 1957). However, this cell may not be

unique. An unambiguous unit cell is the so-called reduced cell

defined by Niggli (Niggli, 1928; Santoro & Mighell, 1970). The

general criteria for the reduced cells are summarized in

Table 3; the complete criteria, which include special condi-

tions, are listed in the International Tables of Crystallography

(De Wolff, 2016).

If a, b and c are the lattice vectors of the reduced cell, then

every linear combination a0, b0 and c0 of these vectors

a0 ¼ n11aþ n12bþ n13c; ð26Þ

b0 ¼ n21aþ n22bþ n23c; ð27Þ

c0 ¼ n31aþ n32bþ n33c; ð28Þ

where nij are integers and components of the transformation

matrix

N ¼

n11 n12 n13

n21 n22 n23

n31 n32 n33

0
@

1
A; ð29Þ

can be regarded as a superlattice, which obeys the Laue

condition (Santoro et al., 1980). Therefore, in general, any

solution that is found when indexing a diffraction pattern must

be analysed if it satisfies the conditions of the reduced cell.

In the matrix approach to symmetry (Himes & Mighell,

1987) N is represented by one of the 64 symmetry matrices

to check if the transformation leads to identity

(a0 ¼ a; b0 ¼ b; c0 ¼ c, �0 = �, �0 = �, � 0 = �).

Equations (26) to (28) can be equivalently written as A0 =

(a0, b0, c0)T = NA. Considering equation (9) the following

relations are valid:

A0 ¼ NA ¼ 2�NA��1
¼ 2�A�0�1

, A� ¼ A�0N; ð30Þ

A�
h

k

l

0
@

1
A ¼ A�0N

h

k

l

0
@

1
A ¼ A�0

h0

k0

l0

0
@

1
A) h0

k0

l0

0
@

1
A ¼ N

h

k

l

0
@

1
A;
ð31Þ

where h0, k0 and l0 are the Laue indices in the transformed

system. Thus the transformation N which converts the lattice

vectors is the same as that which converts the Laue indices in

the reciprocal space. This is summarized in Table 4.
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Table 3
General criteria for reduced cells.

General criteria for reduced cell type I (positive reduced cell; all of the angles
are <90�)†

a2
	 b2

	 c2; c cos � 	
b

2
; c cos� 	

a

2
; b cos � 	

a

2

General criteria for reduced cell type II (negative reduced cell; all of the
angles are 
90�)†

a2
	 b2

	 c2; c cos �j j 	
b

2
; c cos �
�� �� 	 a

2
; b cos �
�� �� 	 a

2

ðbc cos �j j þ ac cos�
�� ��þ ab cos �

�� ��Þ 	 a2 þ b2

2

† Special criteria if equality signs are valid.



Therefore, reduction of the cell parameters to the reduced

cell (Santoro & Mighell, 1970; Mighell, 1976; Křivý & Gruber,

1976) is equivalent to converting the Laue indices as in the

common reciprocal metric tensor approach (Kroll et al., 2011).

If there are two solutions to a diffraction pattern with the Laue

indices h; k; l of the unitary cell and h0; k0; l0 of a superlattice,

the transformation matrix N can be easily obtained by linearly

independent Laue indices of three reflections:

N ¼

h01 h02 h03
k01 k02 k03
l01 l02 l03

0
@

1
A h1 h2 h3

k1 k2 k3

l1 l2 l3

0
@

1
A
�1

: ð32Þ

The Miller indices u, v and w can equally be used. If the

determinant of the transformation matrix equals �1, the cell

volume does not change. Thus, systematically combining three

linearly independent triples of Laue indices, respectively, and

calculating their determinants can give an estimate of whether

a found solution may match the Buerger cell. Furthermore, in

GIXD, after finding a set of cell parameters, by calculating

three linearly independent reciprocal vectors and evaluating

their inverse matrix the three shortest lattice vectors can be

determined (see Appendix E).

The criteria for reduced cells demand that a2 	 b2 	 c2 and

that the angles are either acute (type I) or obtuse (type II). For

this, the expressions in Table 5, which directly result from the

symmetric properties of the equations in Table 2, are helpful.

4. Example: pentacenequinone on highly oriented
pyrolytic graphite

We now employ our novel formalism in the indexing of a thin

film of 6,13-pentacenequinone (PQ, C22H12O2), which was

grown on a freshly cleaved, highly oriented pyrolytic graphite

(HOPG) substrate by physical vapour deposition under high

vacuum conditions (base pressure <5 � 10�6 Pa; deposition
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Table 4
Relations between the cell parameters a, b, c, � , �, �, the volume V, the Laue indices h, k, l and the Miller indices u, v, w of two crystallographic unit cells
linearly transformed by the matrix N.

a0x a0y a0z
b0x b0y b0z
c0x c0y c0z

0
@

1
A ¼ n11 n12 n13

n21 n22 n23

n31 n32 n33

0
@

1
A ax ay az

bx by bz

cx cy cz

0
@

1
A

a0 ¼ a0
�� �� ¼ ðn2

11a2 þ n2
12b2 þ n2

13c2 þ 2n11n12ab cos � þ 2n11n13ac cos�þ 2n12n13bc cos�Þ1=2

b0 ¼ b0
�� �� ¼ ðn2

21a2
þ n2

22b2
þ n2

23c2
þ 2n21n22ab cos � þ 2n21n23ac cos�þ 2n22n23bc cos�Þ1=2

c0 ¼ c0
�� �� ¼ ðn2

31a2 þ n2
32b2 þ n2

33c2 þ 2n31n32ab cos � þ 2n31n33ac cos �þ 2n32n33bc cos�Þ1=2

cos � 0 ¼
n11n21a2 þ n12n22b2 þ n13n23c2 þ ðn11n22 þ n12n21Þab cos � þ ðn11n23 þ n13n21Þac cos�þ ðn12n23 þ n13n22Þbc cos �

a0j j b0j j

cos�0 ¼
n11n31a2 þ n12n32b2 þ n13n33c2 þ ðn11n32 þ n12n31Þab cos � þ ðn11n33 þ n13n31Þac cos�þ ðn12n33 þ n13n32Þbc cos�

a0j j c0j j

cos�0 ¼
n21n31a2 þ n22n32b2 þ n23n33c2 þ ðn21n32 þ n22n31Þab cos � þ ðn21n33 þ n23n31Þac cos�þ ðn22n33 þ n23n32Þbc cos�

b0j j c0j j

V 0 ¼

n11 n12 n31

n21 n22 n23

n31 n32 n33

������
������V

h0

k0

l0

0
@

1
A ¼ n11 n12 n13

n21 n22 n23

n31 n32 n33

0
@

1
A h

k

l

0
@

1
A u0

v0

w0

0
@

1
A ¼ n11 n12 n13

n21 n22 n23

n31 n32 n33

0
@

1
A u

v

w

0
@

1
A



rate 0.5 nm min�1; final nominal film thickness 30 nm, as

determined by a quartz crystal microbalance). The film was

then investigated at the beamline W1 at the synchrotron

radiation source DORIS (DESY, HASYLAB, Germany).

GIXD experiments together with specular X-ray diffraction

were performed using a goniometer in pseudo 2+2 geometry

by a one-dimensional detector (MYTHEN, Dectris) and a

wavelength of 1.1796 Å for the primary X-ray beam. The

specular scan was performed in the 2� range of 2� (qz =

0.185 Å�1) to 26� (2.395 Å�1). For the GIXD experiments, the

incident angle of the primary beam was set to �i = 0.13�. The

in-plane scattering angle �f was varied between 3� and 40� in

steps of 0.05� where for every step an out-of-plane scattering

range of ��f = 3.5� was recorded. In total, seven scans along �f

were performed so that the complete covered angular range of

�f was 0� to 24.5�. The diffraction pattern was transformed

from real to reciprocal space using the custom-made software

PyGID (Moser, 2012). The resulting reciprocal-space map

illustrates measured intensities on a logarithmic scale by a

colour code. The exact positions of the Bragg peaks in terms of

qxy and qz were determined by integration of the intensities

along qxy and qz, respectively, and fitted by Gaussian curves.

The qz values of the peak positions were corrected in terms of

refraction effects; a maximum variation of 0.011 Å�1 was

obtained (Resel et al., 2016).

Fig. 3 shows the specular diffraction pattern where only the

region around the two dominant diffraction peaks is depicted.

The peak at qz = 1.873 Å�1 (d = 3.355 Å) agrees well with the

expected peak position of the 002 reflection of graphite (d =

3.354 Å) based on the lattice constants of a = 2.459 and c =

6.708 Å (Baskin & Meyer, 1955). The second peak located at

qspec = 1.946 Å�1 (d = 3.229 Å) is assigned to the PQ crystals.

Fig. 4(a) shows the diffraction pattern of the GIXD experi-

ment. Bragg peaks at qxy = 2.946 Å�1 and qz = 0.002 Å�1, qz =

0.941 Å�1 and qz = 1.880 Å�1 are identified as the 10�10,

10�11 and 10�12 reflections of the HOPG single-crystal

substrate. Additionally, a Debye–Scherrer ring appears at q =

1.87 Å�1 which is assigned to disordered 0002 planes of

graphite. The diffraction features of the HOPG substrate are

marked by arrows in Fig. 4(a).

The remaining Bragg peaks are assigned to PQ crystals;

they are distributed within the whole reciprocal-space map.

The most intense peaks with their qxy and qz positions were

used together with qspec = 1.946 Å�1 for the indexing routine.

A total of 74 reflections of the GIXD map were included in the

analysis. In a first step of indexing the Miller indices u and v of

the contact plane (the crystallographic plane which is parallel

to the substrate surface) are varied by integer variables

together with a systematic change of the Laue indices of three

reflections so that a first set of lattice constants a, b and � are

obtained [see equation (43) in Appendix B]. Note that with

the restriction of linear independency due to linear transfor-

mation [see equation (32)] three pairs of Laue/Miller indices

are, in principle, freely eligible to get a mathematically valid

solution which may represent a superlattice. This first set of

lattice constants is used to determine the Laue indices h and k

of all other peak positions (qxy, qz) until a suitable assignment

of the Laue indices h and k to all 74 reflections is obtained. For

this procedure, mathematical expressions in Appendix D are

helpful. In total 150 integer variables and three real numbers

have to be determined.

In a subsequent step, the assignment of the remaining Miller

index w as well as the Laue indices l and the evaluation of the

lattice constants c, � and � have to be accomplished. There are

two possible ways. The first possibility relies on symmetry

considerations of equation (24) (see Table 2). A systematic

exchange of the two Miller indices, the pairs of Laue indices

and the three lattice constants leads to a set of three equiva-

lent equations where, finally, all parameters of the indexing are

determined. The second possibility is simply using equations

(21) and (25), where the remaining integer w of the contact

plane, the lattice constants c, � and � as well as the Laue

indices l of the 74 reflections are obtained. Expressions in
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Table 5
(a) Interchangeability of the Miller indices u, v, w and the crystallographic
unit-cell parameters a, b, c, �, �, �; (b) change of sign of the Miller indices
u, v, w: effects on the crystallographic unit-cell angles �, �, � and the Laue
indices h, k, l.

Figure 3
Specular X-ray diffraction of a crystalline thin film of PQ grown on
HOPG. The inset gives the chemical structure of the molecule.



Appendix C can be helpful in determining the parameters c*,

w and l of specific reflections. In a last step, when all integer

variables have been assigned, the values of the real lattice

parameters can be fitted. For this procedure expressions in

Table 2 can be used.

As the underlying equations do not allow a unique math-

ematical solution, a manifold of possible results exist. But

crystallographic restrictions constrain these mathematical

solutions. The cell parameters must obey the scalar product

(Niggli) criteria (see Table 3). Furthermore, one has to check if

a solution has the shortest possible edges and thus is a Buerger

cell.

For illustration, we depict the following two mathematical

solutions, both of which obey the scalar product criteria for

type-II cells:

Solution 1: u1 = 1, v1 = 0, w1 = 2; a1 = 5.067 Å, b1 = 8.064 Å,

c1 = 8.882 Å, �1 = 91.64�, �1 = 93.34�, �1 = 94.01�, V1 =

361.2 Å3.

Solution 2: u2 = 1, v2 = 2, w2 = �2; a2 = 5.067 Å, b2 =

11.824 Å, c2 = 12.166 Å, �2 = 95.53�, �2 = 90.22�, �2 = 95.25�, V2

= 722.4 Å3.

In Table 6, corresponding Laue triples of some lower

reflections are given. The determinants of three linearly

independent triples of indices give mostly �1 for solution 1

and �2 for solution 2. The transformation matrix N which

leads from solution 2 to solution 1 can be determined

according to equation (32):

N ¼

1 0 0

1 1
2 �

1
2

0 1
2

1
2

0
@

1
A;

with det(N) = 1
2, establishing the relations between the lattice

parameters, the Miller indices of the contact plane and the

Laue indices of the 74 Bragg peaks (see Table 3).

By applying equation (18), three reciprocal-lattice vectors g,

e.g. of the three Laue triples (1,0,1), (0,1,1) and (0,1,0) for

solution 1, and (1,1,�1), (0,2,0) and (0,1,1) for solution 2, can

be calculated. The determinants of the vector matrices should

be as small as possible but not equal to zero. By determining

their inverse matrices and by multiplying these with vectors m

= 2�(m1, m2, m3)T, where mi are systematically varied integers

between �2 and 2, lattice vectors can be obtained [see

Appendix E with emphasis on equation (71)]. In both cases,

listing the lengths of these vectors in ascending order yields

5.067, 8.064, 8.882, 9.219, 9.819, 9.966, 10.134, 10.479, 11.824

and 12.166 for the ten shortest vectors. The z components of

these vectors are all integer multiples of 2�=gspec (in absolute

values 1, 0, 2, 1, 1, 3, 2, 1, 2, 2, respectively, and thus repre-

senting the Miller indices – see the equations in Table 7).

Therefore, solution 1 matches the reduced cell, whereas
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Figure 4
(a) Reciprocal-space map (RSM) of the PQ thin film grown on HOPG (cf.
Fig. 3); arrows indicate diffraction features of the substrate. (b) Indexing
of the RSM. Crosses denote calculated peak positions assigned to
experimentally observed peaks; for clarity, Laue indices are given only for
selected Bragg peaks. (c) RSM with calculated peak intensities obtained
from the theoretically determined molecular packing; the area of the
circles corresponds to the square of the structure factors.

Table 6
Indexing of the reciprocal-space map of PQ crystals on HOPG (0001)
substrate: corresponding Laue indices of selected individual Bragg peaks
for solution 1 (h1k1l1) with contact plane (102) and for solution 2 (h2k2l2)
with contact plane (12�2).

h1 k1 l1 h2 k2 l2

0 0 1 0 1 �1
1 0 1 1 1 �1
1 �1 1 1 0 �2
0 1 2 0 3 �1
0 �1 2 0 1 �3
1 0 0 1 0 0
1 1 0 1 1 1
1 �1 0 1 �1 �1
0 1 1 0 2 0
0 �1 1 0 0 �2
0 1 0 0 1 1



solution 2 represents a superlattice. The thus obtained vectors

of both solutions, though they do not coincide, but are equally

rotated, span identical parallelepipeds and result in the same

cell parameters a, b, c, �, � and �. Therefore, solution 2 can be

reduced very effectively by the described method.

For evaluating the reliability of powder pattern indexing, a

factor FN has been introduced (Smith & Snyder, 1979). For

GIXD we suggest the following factors for assessing the

accuracy of the obtained result:

dN;xyz ¼
1

N

XN

i¼1

qxyz;i � gxyz;i

qxyz;i

�����
����� ð33Þ

dN;z ¼
1

N

XN

i¼1

qz;i � gz;i

qz;i

����
���� ð34Þ

where N is the number of reflections, (qxyz,i, qz,i) are the

measured and (gxyz,i, gz,i) are the calculated peak positions of

the ith reflection. In our case d74,xyz = 0.0022 and d74,z = 0.0032.

However, it should be emphasized that it is additionally

necessary to prove that the obtained unit cell corresponds to

the reduced cell.

Since the unit-cell dimensions are considerably different to

the three reported phases of PQ (Dzyabchenko et al., 1979;

Nam et al., 2010; Salzmann et al., 2011), we can conclude that a

new polymorph is found. Based on the reduced cell the peak

positions are calculated and plotted in Fig. 4(b). A total of 80

positions of Bragg peaks could be assigned to PQ crystals by

their Laue indices.

If the specular scan is not known, it is then an additional

unknown parameter in equation (24), which has to be solved

numerically by using four pairs of input parameters qxy and qz.

An alternative way would be to exclude the specular diffrac-
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Table 7
Unit-cell vectors for the parameters a, b, c, �, �, �, the Laue indices h, k, l and the Miller indices u, v, w and including the specular scan (gspec) for the non-
rotated (a) and the rotated (b) case.

(a) Non-rotated case (u = v = 0):

a ¼ a

cos ’
sin ’

0

0
@

1
A

b ¼ b

cosð’þ �Þ
sinð’þ �Þ

0

0
@

1
A

c ¼ c

rc cosð’þ�cÞ

rc sinð’þ�cÞ
w
c

2�
gspec

0
@

1
A rc ¼ 1�

w

c

2�

gspec

 !2" #1=2

cos �c ¼
1

rc

cos�

(b) Rotated case:

a ¼ a

ra cosð’þ  ��aÞ

ra sinð’þ  ��aÞ
u
a

2�
gspec

0
@

1
A ra ¼ 1�

u

a

2�

gspec

 !2" #1=2

cos �a ¼
1

ra

u
a cos � � v

b

u
a

� 	2
þ v

b

� 	2
� 2 uv

ab cos �
h i1=2

b ¼ b

rb cosð’þ  þ�bÞ

rb sinð’þ  þ�bÞ
v
b

2�
gspec

0
@

1
A rb ¼ 1�

v

b

2�

gspec

 !2" #1=2

cos �b ¼
1

rb

u
a �

v
b cos �

u
a

� 	2
þ v

b

� 	2
� 2 uv

ab cos �
h i1=2

c ¼ c

rc cosð’þ  þ�cÞ

rc sinð’þ  þ�cÞ
w
c

2�
gspec

0
@

1
A rc ¼ 1�

w

c

2�

gspec

 !2" #1=2

cos �c ¼
1

rc

u
a cos�� v

b cos �

u
a

� 	2
þ v

b

� 	2
� 2 uv

ab cos �
h i1=2

sin ¼
u
a sin �

u
a

� 	2
þ v

b

� 	2
� 2 uv

ab cos �
h i1=2

cos ¼
u
a cos � � v

b

u
a

� 	2
þ v

b

� 	2
� 2 uv

ab cos �
h i1=2



tion peak from the indexing procedure: an alternative notation

of the rotation matrix may then be used [see equation (35) in

Appendix A]. Even in that case a two-step separation of the

indexing can be obtained. Input parameters are the total

length of the scattering vectors qxyz and qz and the estimated

parameters are the lattice constants a, b, � and the two angles

 and ’ which express the orientation of the crystal at the

substrate surface [equation (38)]. Note that qxyz can be easily

determined by q2
xyz = q2

xy + q2
z and due to the Laue condition

qxyz = gxyz and qz = gz. In our case the rotation angles  =

94.01� and ’ = 39.78� are obtained. The other lattice constants

c, � and � can be obtained from equation (37).

There are different possibilities to determine the molecular

packing based on the knowledge of the crystallographic unit

cell (David et al., 2006). In the case of organic thin films rigid-

body refinement procedures based on experimental structure

factors were used (Krauss et al., 2008; Mannsfeld et al., 2011)

or theoretical modelling was applied (Schiefer et al., 2007;

Jones et al., 2017). Here, the molecular packing relative to the

experimentally determined unit cell has been determined by

theoretical modelling, where a combination of molecular

dynamics (MD) simulations and density functional theory

(DFT) was used. MD simulations were carried out using the

LAMMPS code in combination with the CHARMM General

Force Field v.2b7 (Plimpton, 1995; Vanommeslaeghe et al.,

2010). In a first step, several hundred trial structures were

created by placing one molecule randomly into a slightly

expanded unit cell. During the subsequent MD run, the system

was allowed to relax energetically while the unit cell was

continuously shrinking to the experimental size. The most

promising structures were further redefined using DFT

geometry optimizations as implemented in the VASP package

(version 5.4.1) (Kresse & Hafner, 1993, 1994; Kresse &

Furthmüller, 1996a,b). The Perdew–Burke–Ernzerhof func-

tional for the exchange and correlation (Perdew et al., 1996)

and projector-augmented wave potentials for all the elements

(Blöchl, 1994; Kresse & Joubert, 1999) were used. Van der

Waals corrections were included following the many-body

dispersion approach of Tkatchenko et al. (2012). A plane-

wave cut-off energy of 800 eV and a converged Monkhorst–

Pack grid (Monkhorst & Pack, 1976) of 7 � 4 � 4 were used.

The total energy during the self-consistency loop of each DFT

step was converged to 10�8 eV. Calcu-

lations were performed using the

experimental volume, relaxing the

atomic positions down to a threshold of

10�3 eV Å�1 on forces. Based on the

molecular packing a diffraction pattern

was calculated. The result is depicted in

Fig. 4(c), where the intensity as well as

the position of the Bragg peaks are

illustrated by circles. The centre of the

circles gives the peak position, while the

area of the circles gives the square of

the corresponding structure factors. An

excellent agreement between experi-

mentally and calculated peak intensities

is found; hence, the resulting molecular packing describes the

surface-induced phase of PQ on HOPG. The CIF for the

solved crystal structure can be found in the supporting infor-

mation.

The packing of the PQ molecules within the crystal struc-

ture can be described by a parallel stacking of the planar

molecules. The stacking distance between the planar mole-

cules is about 3.45 Å (Fig. 5a). Short contacts appear between

O atoms and neighbouring H atoms and between terminal H

atoms of neighbouring PQ molecules (Fig. 5b). In a subse-

quent step the orientation of the molecules relative to the

substrate surface can be determined. The described indexing

routine reveals the assignment of the Laue indices 102 to the

specular diffraction. Plotting the crystallographic plane with

Miller indices 102 towards the molecular packing of our crystal

structure solution directly reveals the orientation of the

molecules relative to the substrate surface (Fig. 5a). It is found

that the long molecular axes are aligned parallel to the

substrate surface. The molecular plane encloses an angle of 8�

to a ‘flat-on’ orientation. It seems that the enhanced inter-

molecular interactions via the short oxygen–hydrogen bonds

(discussed above) establish a stabilization of a layer formed by

tilted molecules.

5. Conclusion

In the present work, we provide a unifying framework for the

indexing of reciprocal-space maps obtained by GIXD on fibre-

textured thin films, which we successfully apply in deriving the

full structure solution of an as-yet-unknown substrate-medi-

ated polymorph of PQ.

Including the specular peak in the mathematical formalism

of diffraction experiments can be of considerable help, espe-

cially in the case of GIXD where the spatial orientation of the

unit cell has to be considered. For the rotation parameters the

integer variables u, v and w can be employed, and mathema-

tical expressions can be derived in which the unknown cell

parameters are considerably reduced. This significantly

reduces computational efforts, as the integer variables can be

systematically varied and only three real unknown parameters

remain, which can be analytically calculated using qxy and qz of
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Figure 5
Molecular packing of PQ molecules as well as orientation of the molecules relative to the substrate
surface determined from the crystal structure solution: in a side view along the long molecular axis
(a) and in a top view of a single molecular layer across the crystallographic (102) plane (b). The
crystallographic unit cell is depicted in green.



three independent diffraction peaks. In subsequent steps the

remaining parameters can then be conveniently determined.

As any linear combination of the unit-cell vectors satisfies

the imposed mathematical conditions no unique solution

exists. Based on the well known criteria originally imposed by

Niggli, the reduced unit cell has therefore to be determined.

The main conditions for reduction require that the cell is

based on the three shortest vectors of the lattice. These can be

obtained from any mathematical solution by the proper three-

dimensional linear transformation. It may be helpful to use the

obtained cell parameters and Laue indices to calculate three

linearly independent reciprocal vectors and evaluate their

inverse matrix to determine the lattice vectors of the reduced

unit cell.

Though our analysis primarily considers the general case of

a triclinic system, it also applies to crystal systems of higher

symmetries which then imply a higher impact of symmetry

considerations such as that of reflection conditions.

APPENDIX A
Alternative notation of the rotation matrix

If u and v have to be assumed to be real numbers (and if not u

= v = 0) it may be more convenient to rewrite equation (14) as

Rð ;�Þ

¼

cos2 þ cos �sin2 cos sin 1� cos �ð Þ � sin sin �

cos sin 1� cos �ð Þ sin2 þ cos �cos2 cos sin �

sin sin � � cos sin � cos �

0
B@

1
CA;
ð35Þ

where n1 ¼ cos and n2 ¼ sin . Then equations (19) and

(20) are rewritten as

g2
xyz ¼ h2z2

a þ k2z2
b � 2hkzazb cos �

þ ha� cos�� þ kb� cos�� þ lc�ð Þ
2; ð36Þ

gz ¼ hza sin � cosð� �  Þ � kzb sin � cos 

þ cos �ðha� cos�� þ kb� cos �� þ lc�Þ; ð37Þ

with za ¼ 2�=ða sin �Þ and zb ¼ 2�=ðb sin �Þ. From equations

(36) and (37) the following expression can be derived:

g2
xyz ¼ h2z2

a þ k2z2
b � 2hkzazb cos �

þ
gz � hza sin � cosð� �  Þ þ kzb sin � cos 

cos �


 �2

ð38Þ

which comprises the Laue indices h and k, the three unit-cell

parameters a, b, � and the rotation angles � and  .

APPENDIX B
Mathematical procedure for analytically determining
the cell parameters a, b and c

For analytically determining the unit-cell parameters a, b and

�, it is convenient to introduce the parameters Z2
a, Z2

b and X�

with the substitutional relations

Z2
a ¼ z2

a 1� v2z2
b

sin2�

g2
spec

 !
; ð39Þ

Z2
b ¼ z2

b 1� u2z2
a

sin2�

g2
spec

 !
; ð40Þ

X� ¼ zazb cos � � uvzazb

sin2 �

g2
spec

 !
: ð41Þ

Note that Z2
a and Z2

b are always positive. Using these substi-

tutions, equation (24) can be rewritten as

1 ¼ Z2
a

1

g2
xy

h� u
gz

gspec

 !2

þ
u2

g2
spec

" #

þ Z2
b

1

g2
xy

k� v
gz

gspec

 !2

þ
v2

g2
spec

" #

� 2X�

1

g2
xy

h� u
gz

gspec

 !
k� v

gz

gspec

 !
þ

uv

g2
spec

" #
: ð42Þ

From three independent Bragg peak series, the parameters Z2
a,

Z2
b and X� can be determined by solving the following set of

equations:

f11 h1ð Þ f12 k1ð Þ f13 h1; k1ð Þ

f21 h2ð Þ f22 k2ð Þ f23 h2; k2ð Þ

f31 h3ð Þ f32 k3ð Þ f33 h3; k3ð Þ

0
@

1
A Z2

a

Z2
b

X�

0
@

1
A ¼ 1

1

1

0
@

1
A; ð43Þ

where

f i1 hið Þ ¼
1

g2
xyi

hi � u
gzi

gspec

 !2

þ
u2

g2
spec

; ð44Þ

f i2 kið Þ ¼
1

g2
xyi

ki � v
gzi

gspec

 !2

þ
v2

g2
spec

; ð45Þ

f i3 hi; kið Þ ¼ �2
1

g2
xyi

hi � u
gzi

gspec

 !
ki � v

gzi

gspec

 !
þ

uv

g2
spec

" #
;

ð46Þ

and i = 1, 2 and 3. For obtaining a, b and � from equations (39)

to (41) the following identity is helpful:

z2
az2

b

sin2 �

g2
spec

¼
Z2

aZ2
b � X2

�

g2
spec � ðu

2Z2
a þ v

2
Z2

b � 2uvX�Þ
: ð47Þ
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APPENDIX C
Compact expressions for the reciprocal cell parameters
a*, b*and c*

If hv � ku = 0 and u 6¼ 0 equations (22) and (24) can be

reduced to

g2
xyg2

spec

c�2
¼ ðu2z2

a þ v2z2
b � 2uvzazb cos �Þ

h

u
w� l

� �2

ð48Þ

and

g2
xyg2

spec ¼ ðu
2z2

a þ v2z2
b � 2uvzazb cos �Þ g2

xy þ
h

u
gspec � gz

� �2
" #

;

ð49Þ

respectively. Combining equations (48) and (49) the following

expression can be obtained:

h

u
gspec � gz

� �2

þ g2
xy ¼ c�2

h

u
w� l

� �2

: ð50Þ

If hv = ku and v 6¼ 0 the following relation can be deduced in

an analogous way:

k

v
gspec � gz

� �2

þ g2
xy ¼ c�2

k

v
w� l

� �2

: ð51Þ

For hw = lu and kw = lv analogous formulas for b* and a*,

which contain only one real unknown besides the integer

variables, are valid.

APPENDIX D
Useful expressions for determining the Laue indices

From equation (42) the following expression for the Laue

index k can be derived:

k ¼ v
gz

gspec

þ h� u
gz

gspec

 !
X�

Z2
b

�

(
1�

u2z2
a þ v

2
z2

b � 2uvzazb cos �

g2
spec

 !

�
g2

xy

Z2
b

� h� u
gz

gspec

 !2

z2
az2

bsin2�

Z4
b

" #)1=2

: ð52Þ

The included components are given in equations (6), (40) and

(41). As a term under a root sign must not be negative the

following conditions need to be satisfied:

h� u
gz

gspec

�����
����� 	 gxy

a

2�

� 2

�
u2

g2
spec

" #1=2

	
gxy

2�
a: ð53Þ

Note that analogous conditions are valid for k and l with the

proper parameters v, b and w, c, respectively. Furthermore,

rough lower limits for the lattice parameters a, b and c with

uð2�=gspecÞ 	 a, vð2�=gspecÞ 	 b and wð2�=gspecÞ 	 c result.

APPENDIX E
General rotation and analysis for three-component
scattering vectors

In the general case, when the individual components of the

reciprocal vector gx, gy and gz have to be considered, equation

(18) has to be expanded by including an additional rotation

around the [0, 0, 1] axis applying the matrix R(’):

Rð’Þ ¼
cos ’ � sin ’ 0

sin ’ cos ’ 0

0 0 1

0
@

1
A; ð54Þ

which performs a rotation counterclockwise by an angle ’.

Then the reciprocal vector

g ¼

gx

gy

gz

0
@

1
A

can be expressed as

g ¼ Rð’ÞRð ;�ÞA�001

h

k

l

0
@

1
A: ð55Þ

From equation (55), using equation (4), it follows that

h

k

l

0
@

1
A ¼ A�001

�1
Rð ;�ÞTRð’ÞTg ¼

1

2�
A001Rð ;�ÞTRð’ÞTg:

ð56Þ

With

A ¼ A001Rð ;�ÞTRð’ÞT ð57Þ

equation (56) can be equivalently expressed as

Ag ¼

a

b

c

0
@

1
Ag ¼ 2�

h

k

l

0
@

1
A; ð58Þ

where a, b and c are the rotated unit-cell vectors with the

relations |a| = a, |b| = b, |c| = c, a�b/(|a||b|) = cos�, a�c/(|a||c|) =

cos� and b�c/(|b||c|) = cos�. These vectors can be written

explicitly as

a ¼ a

ra cosð’þ  ��aÞ

ra sinð’þ  ��aÞ

sin � sin 

0
@

1
A; ð59Þ

b ¼ b

rb cosð’þ  þ�bÞ

rb sinð’þ  þ�bÞ

sin � sinð � �Þ

0
@

1
A; ð60Þ

c ¼ c

rc cosð’þ  þ�cÞ

rc sinð’þ  þ�cÞ

cos � sin� sin �� þ sin �ðcos sin� cos �� þ sin cos�Þ

0
@

1
A;
ð61Þ

with

ra ¼ ð1� sin2 � sin2  Þ1=2; ð62Þ
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cos �a ¼
1

ra

cos ; ð63Þ

rb ¼ ½1� sin2 � sin2
ð � �Þ�1=2; ð64Þ

cos �b ¼
1

rb

cosð � �Þ; ð65Þ

rc ¼

n
1� ½cos � sin � sin �� þ sin �ðcos sin � cos��

þ sin cos�Þ�2
o1=2

; ð66Þ

cos �c ¼
1

rc

ðcos cos�� sin sin � cos��Þ: ð67Þ

Thus, if three reciprocal vectors g1, g2 and g3 are given, the

following relation is valid:

G

a

b

c

0
@

1
A

T

¼ GAT
¼ 2�HT; ð68Þ

where

G ¼

gx1 gy1 gz1

gx2 gy2 gz2

gx3 gy2 gz3

0
@

1
A ð69Þ

and (hi; ki; liÞ are the corresponding triples of Laue indices

with

H ¼

h1 h2 h3

k1 k2 k3

l1 l2 l3

0
@

1
A: ð70Þ

Equation (68) can be equivalently expressed as

AT
¼ 2�G�1HT: ð71Þ

Furthermore, as

V ¼ jdetðAÞj ¼ detðA001Þ ð72Þ

the following relation for the determinants of G and H is valid:

jdetðGÞjV ¼ 2�ð Þ3jdetðHÞj: ð73Þ

If the specular scan gspec is known it is convenient to apply

equations (15)–(17) in the rotation matrix Rð ;�Þ [equation

(35)]. Then the unit-cell vectors a, b and c can be expressed as

given in Table 7. Note that the z components are only a

function of the Miller index and gspec.

The unit-cell vectors must be solutions to all reciprocal

vectors gi, which, according to equation (58) and comprising

equation (71), can be written as

Agi ¼ 2� G�1HT
� �T

gi ¼ 2�H G�1
� �T

gi ¼ 2�hi; ð74Þ

where

gi ¼

gxi

gyi

gzi

0
@

1
A

and

hi ¼

hi

ki

li

0
@

1
A:

Therefore, if a0, b0 and c0 are vectors of a superlattice with

A0 ¼

a0

b0

c0

0
@

1
A ¼ NA; ð75Þ

where N is the transformation matrix [see equations (26)–

(29)], the following relation with h0i ¼ ðh
0
i; k0i; l0iÞ

T
can be

derived from equation (74):

A0gi ¼ NAgi ¼ 2�Nhi ¼ 2�h0i: ð76Þ

From equation (71) it can be deduced that 2�G�1m, the

product of the inverse matrix of three reciprocal vectors with a

vector m, consisting of a triple of arbitrary integers (m1, m2,

m3), leads to a vector of the reduced cell, if m matches (h1, h2,

h3)T, (k1, k2, k3)T or (l1, l2, l3)T. If a transformation matrix N

exists so that m equals N(h1, h2, h3)T, N(k1, k2, k3)T or N(l1, l2,

l3)T a vector of a superlattice is obtained. According to

equation (73) it is favourable to select three reciprocal vectors

whose matrix results in a determinant, which is as small as

possible but unequal to zero. Otherwise a unit cell which is too

small and does not satisfy equation (74) for all reciprocal

vectors may result. The Buerger and subsequently the reduced

cell is obtained by choosing the three shortest vectors which

are not coplanar and whose scalar products with all reciprocal

vectors yield integers.
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