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In an article entitled A new theory for X-ray diffraction [Fewster (2014). Acta

Cryst. A70, 257–282], hereafter referred to as NTXRD, it is claimed that when

X-rays are scattered from a small crystallite, whatever its size and shape, the

diffraction pattern will contain enhanced scattering at angles of exactly 2�B,

whatever the orientation of the crystal. It is claimed that in this way scattering

from a powder, with randomly oriented crystals, gives rise to Bragg scattering

even if the Bragg condition is never satisfied by an individual crystallite. The

claims of the theory put forward in NTXRD are examined and they are found to

be in error. Whilst for a certain restricted set of shapes of crystals it is possible to

obtain some diffraction close to (but not exactly at) the Bragg angle as the

crystallite is oriented away from the Bragg condition, this is generally not the

case. Furthermore, contrary to the claims made within NTXRD, the recognition

of the origin of the type of effects described is not new, and has been known

since the earliest days of X-ray diffraction.

1. Introduction

Despite the field of X-ray diffraction being more than a

century old, in an article entitled A new theory for X-ray

diffraction (Fewster, 2014), hereafter referred to as NTXRD, it

is claimed that a new theory of diffraction is required to

explain the intensities observed in powder diffraction and

other diffraction geometries. Within NTXRD a theory of

X-ray diffraction is proposed which predicts that ‘the scattering

from a crystal or crystallite is distributed throughout space

[which] leads to the effect that enhanced scatter can be observed

at the ‘Bragg position’ even if the ‘Bragg condition’ is not

satisfied’ and that ‘the scatter from a single crystal or crystallite,

in any fixed orientation, has the fascinating property of

contributing simultaneously to many ‘Bragg positions’’. If this

new approach were correct it would certainly have significant

implications for the whole field of X-ray diffraction, and given

the prominence afforded to this new theory (it featured on the

front cover of the published volume), its veracity or otherwise

deserves appropriate scrutiny. However, we show here that the

analysis presented within NTXRD is incorrect, and that the

underlying concepts upon which the theory is based are not

new but were known to the earliest pioneers of X-ray

diffraction.

At the outset we emphasize that in this article we will not

ourselves be undertaking the task of proposing an explanation

for the several interesting pieces of experimental data

presented by Fewster, which are certainly worthy of further

study and attention. Rather, our more restricted aim is to

demonstrate that the new theory that he puts forward is

incorrect, and we identify the sources of error in the argu-

ments put forward in NTXRD. Secondly, whilst the interested

reader would no doubt benefit from reading the NTXRD
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article in full, we present in the section below the key result of

the theory within NTXRD which we deem to be erroneous.

Thirdly, it is important to note that the new theory of X-ray

diffraction that Fewster puts forward is based on a set of

highly simplifying assumptions. These assumptions are the

very same approximations made over a century ago by the

doyens of the field. We adopt the same approach here:

following Fewster we will be assuming that the crystal of

interest is irradiated by a monochromatic plane wave with a

transverse coherence length larger than the crystal, and that

the diffraction observed in the far field is in the Fraunhofer

limit: that is to say that the size of the illuminated crystal is

w� ðR�Þ1=2, where R is the distance to the detector and � the

wavelength of the X-rays, such that the condition should be

reasonably well obeyed for diffraction from crystals of the

order of 1 mm in size when the detector is several tens of cm

distant. Further, the kinematic approximation with zero

absorption is also assumed, we treat the atoms as point scat-

terers, and neglect the effects of polarization and of finite

temperature. Whilst it is well known that the assumptions

made above can break down even for diffraction from small

crystallites (Shabalin et al., 2017), for the sake of direct

comparison we use the same assumptions as those made in

NTXRD.

2. Fewster’s theory

Consider the diffraction geometry shown in Fig. 1, adapted

from Fig. 4(a) of NTXRD. Fewster derives the following

formula [the square of the amplitude, A�2�, calculated in

equation (5) of NTXRD] for the scattered intensity from a set

of atoms, recorded by a detector placed at an angle 2� to a

beam of monochromatic radiation of wavelength � which is

incident at an angle � to the crystal plane:

Ið�; �Þ ¼ A�2�ðnÞ
�� ��2/

�����sinc
�Lx

�
cosð2� ��Þ � cosð�Þ½ �

� �

� sinc
�d

�
½2 sinð�Þ� � n�

� �
sinðNf�d

� ½2 sinð�Þ� � n�gÞ

sinf�d
� ½2 sinð�Þ� � n�g

�����
2

;

ð1Þ

where Lx is the length of the crystal, d is the plane spacing, n

denotes the ‘order’ of planes from which the X-rays are

diffracting and N is the number of planes in the stack

contributing to the reflection.

This formula predicts maxima in the scattered intensity

whenever � ¼ � (i.e. a specular peak) and when � ¼
arcsinðn�=2dÞ (the Bragg peak), no matter what angle the

crystal is placed at relative to the incident beam, and this

prediction forms the fundamental basis of the new theory of

diffraction described in NTXRD. However, equation (1) is

incorrect and, as we shall show, the actual formula for the

angle-dependent scattering, known since the earliest days of

X-ray diffraction, leads to substantially different conclusions.

We discuss the error in Fewster’s analysis in x3, after first

outlining the specific predictions of NTXRD.

In Figs. 2(a) and 3(a) we plot the intensity observed at 2�,

calculated from jA�2�ð1Þj
2 and j

P2
n¼0 A�2�ðnÞj

2, respectively,

where A�2� is defined as in equation (1), for a range of angles

of incidence, � ¼ f � �B. For this particular case we have set

�=d ¼ 0:5 and N ¼ 1000 [this ratio of wavelength to spacing is

within 2% of that used by Fewster, who uses a value of 0.491

corresponding to the diffraction of Cu K� radiation from the

(111) planes of silicon, although specific lattices are not

mentioned within NTXRD]. It can be seen in both figures that

for all values of � there is some enhanced scattering at a

position corresponding to exactly that of the Bragg condition,

along with a peak that corresponds to specular scattering (the

two being identical for f ¼ 1).

Note that the inclusion of the planes n ¼ 0 and n ¼ 2 makes

Fig. 2(a) identical to Fig. 5 of NTXRD. On the basis of this plot

it is claimed within NTXRD that for a set of crystallites with

random orientations the specular scattering associated with

each crystal will occur at different scattering angles, thus

producing a background intensity, whereas because each

crystallite produces some scattering at exactly the Bragg

condition, the intensities at the scattering angle 2�B from all of

the crystals add, giving rise to a sharp peak. This result forms

the basis of the work within NTXRD. However, we show

below this analysis to be in error.

3. The error in Fewster’s analysis

Fewster’s analysis contains three errors – one minor and two

major. Firstly, he states that the amplitude, A1, of X-rays

diffracted from a single (the first) plane shown in Fig. 1 is given

by

A1 / sinc
�Lx

�
cosð2� ��Þ � cosð�Þ½ �

� �
: ð2Þ

This is clearly the scattering amplitude from a uniform plane.

However, if instead we consider scattering from N discrete
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Figure 1
A schematic diagram of the diffraction setup. Radiation is incident on a
crystal plane at a variable angle �, and the detector is placed at an angle
of 2� with respect to the incident X-rays. � denotes the rotation axis used
in x7.
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Figure 2
A comparison of the predictions of (a) equation (1), the NTXRD result for n ¼ 1, and (b) equation (21), our result for a cubic shaped crystallite with
faces aligned to the cube axes, for radiation incident at an angle � ¼ f � �B for a variety of f values. Both distributions exhibit specular reflections. Whilst
the NTXRD result predicts a further peak at exactly 2�B, we find this second peak to vary in angle as described in the text.

Figure 3
A comparison of the predictions of the theory presented in (a) NTXRD and in (b) the theory represented by equation (20), including contributions from
higher-order planes. In addition to the deviations previously noted in Fig. 2, the higher-order terms of equation (20) produce subsidiary maxima in (b)
which are not present in (a).



atoms (assumed here to be point-like, i.e. ignoring the atomic

form factor) separated by a distance a, the scattered amplitude

from a single plane of atoms is

A1 /
sin �Nxa

� cosð2� ��Þ � cosð�Þ½ �
� �

sin �a
� cosð2� ��Þ � cosð�Þ½ �
� � : ð3Þ

This is only a minor error since, in the small-angle limit,

equations (2) and (3) are in very close agreement, but diverge

for larger angles (we discuss further the relationship between

the use of sinc functions to describe the diffraction and the

ratio of two sine functions in x4).

The first of the major errors in Fewster’s analysis

is as follows. He states correctly that the phase

difference for the scattering from successive planes, �’, is

ð2�=�Þd½sin �þ sin ð2� ��Þ�. However, he erroneously

assumes that this phase difference can be approximated as

ð2�=�Þð2dsin �Þ. This is incorrect, and it is this approximation

that leads to NTXRD always giving a peak in the scattered

intensity at the Bragg condition. We discuss the origin of this

approximation below. If one instead uses the correct phase

difference, then summing the complex amplitudes over the Ny

planes yields

Atot /
Pm¼Ny�1

m¼0

A1 expðim�’Þ; ð4Þ

which, on inserting the correct value of �’, yields

Atot /
sinf�Nxa

� ½cosð2� ��Þ � cosð�Þ�g

sinf�a
� ½cosð2� ��Þ � cosð�Þ�g

�
sinf

�Nya

� ½sinð2� ��Þ þ sinð�Þ�g

sinf�a
� ½sinð2� ��Þ þ sinð�Þ�g

; ð5Þ

where we have set d ¼ a (a simple cubic lattice) and which can

be recognized as the two-dimensional form of the result

obtained by Scherrer (1918), as outlined in the classic text by

Warren (1969).

A further error asserted within NTXRD is that the analysis

presented holds true for all crystal shapes. This is incorrect.

The results presented in this section only hold true for an

orthorhombic crystal with the sides cut parallel to the unit-cell

axes. We discuss diffraction from more general crystal shapes

in x5.

At this juncture we discuss in more depth the origin of the

specific error leading Fewster to assert that some peak in the

scattered intensity always occurs at the Bragg condition,

independent of �. Whilst we find it somewhat difficult to

follow the line of reasoning taken in NTXRD (as it appears to

rely on only taking into account specific scattering points,

rather than correctly summing all of the complex amplitudes

from all scatterers), during the preparation of this article Paul

Fewster drew our attention to one of his later articles within

which he puts forward additional arguments as to why he

maintains there is always enhanced scattering at the Bragg

condition (Fewster, 2016). However, whilst the additional

argument within Fewster (2016) is also deeply flawed, it does

give some further insight into the origin of the error. Consider

the diagram shown in Fig. 4 [adapted from Fewster (2016)],

which shows the path length l ¼ aþ b between two points

(where here a denotes the distance shown in Fig. 4, rather than

the lattice spacing): the first, P, in the upper plane, and a point

Q in the lower plane. As pointed out by Fewster, the differ-

ence in path length between the waves scattering from P and

Q is given by

l ¼ aþ b ¼
d

cos�
½sinð�þ �Þ þ sinð2� ��� �Þ�: ð6Þ

The nub of the claim in Fewster (2016) is that it can be shown

that for a fixed scattering point, P, the relevant number of

scattering points, Q, in the next plane that scatter with a path

length that differs from � by �� (where �� is some fixed

difference in path length that we choose such that ��� �)

maximizes at the Bragg condition � ¼ �B ¼ sin�1
ð�=2dÞ

independent of �, and hence enhanced scattering will always

be seen at the Bragg angle. This is illustrated in Fig. 3 of

Fewster (2016), which we shall in due course replicate below.

We assume that this is why, in Fewster (2014), he makes the

small-angle approximation detailed above. However, we

demonstrate below that the above claim is also false and

identify the origin of the error.

Let us consider how we should calculate the effective

length, �x, along the lower plane that contains points that

scatter in such a way so as to have a path length with respect to

P that differs from � by �� (as the relevant scattering

amplitude will be proportional to this length). Let the coor-

dinate of Q along its plane be x (such that the fixed x coor-

dinate of P is 0). Then, the length along the lower plane that

contains points that scatter with path lengths within �� of �
will be proportional to �x,

�x ¼ ��
dx

dl

� �
l¼�

¼ ��
dx

d�

� �
d�

dl

� �	 

l¼�

: ð7Þ

We state here the error that Fewster makes. He does not

calculate the number density of points in the second plane as a

function of the deviation in the path difference. Instead, he

calculates the number density of path lengths that are within

�� of � as a function of �, and then evaluates how many

scattering points in the second plane are associated with each

of the path lengths that fulfil this condition. To put it in simple

mathematical terms, he effectively only considers the second
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Figure 4
The geometry for calculating the positions Q, in terms of incident
angles and detector capture angles 2�, used to construct the path
lengths described by equation (6): l = a + b = ðd= cos�Þ½sinð�þ �Þ +
sinð2� ��� �Þ� [adapted from Fewster (2016)].



term appearing in the chain rule on the right-hand side of

equation (7), i.e. he erroneously assumes

�x0 / ��
d�

dl

� �
l¼�

: ð8Þ

That this is being assumed can be confirmed by examining

the short Python code in the supporting information to

Fewster (2016), from which Fig. 3 in that article is produced,

and from the statement within Fewster (2016) that ‘we can

decide on an acceptable path difference, � ¼ jaþ b� n�j and

sum the number of � values, for specific � and 2� values, that

have a path difference <�’. Whilst this term does indeed peak

close to the Bragg angle for all �, it does not represent the

required physical quantity which is correctly described by

equation (7). When multiplied by the second term in the chain

rule [i.e. equation (7) is evaluated], this effect vanishes, as

would be expected. Let us now show this. From equation (6)

differentiation of l with respect to � yields

dl

d�
¼ d sec2 �½cos �� cosð2� ��Þ�: ð9Þ

However, to evaluate equation (8) we seek solutions where

the �� is the deviation in path length from �. Now, by

rearrangement of equation (6) with aþ b ¼ �

tan� ¼
½sin �þ sinð2� ��Þ� � �=d

½cosð2� ��Þ � cos ��
: ð10Þ

Substituting this solution for tan � (with l ¼ �) from equation

(10) into equation (9) we find

d�

dl

� �
l¼�

¼

½cosð2� ��Þ � cos ��

½cosð2� ��Þ � cos ��2 þ ½sin �þ sinð2� ��Þ � �=d�2
:

ð11Þ

We plot �x0ð�; �Þ calculated from equations (8) and (11) in

Fig. 5, using the same ratio of � and d (�=d ¼ 0:5) as used in

Fewster (2016). It can be seen that whilst equation (11) does

not appear in Fewster (2016), this plot is indeed identical in

form to Fig. 3 in Fewster (2016). We stress again that this does

not represent the relevant number of points along the scat-

tering plane that scatter with path lengths within �� of �. That

density is represented by equation (7), which we now evaluate.

Consider the first term in the chain rule of equation (7). As

x ¼ d tan �, then, without setting the constraint l ¼ �,

dx

d�

� �
¼ d sec2 �; ð12Þ

and substituting equations (9) and (12) into equation (7) we

find

�x ¼ ��
1

½cos �� cosð2� ��Þ�
: ð13Þ

We note that this is a function with no dependence on �. Since

in the derivation above we have not yet set the constraint

l ¼ �, a large value of �x represents a turning point in the

path difference of any value, l0. From equation (13), we see

that �x always maximizes upon the specular condition being

met (� ¼ �) (or conversely we can say that the path length as

a function of the position of Q minimizes at this condition),

and thus for �x to maximize under the constraint that l ¼ �,

then � ¼ � ¼ �B, consistent with traditional diffraction

theory. As expected, no scattering peak at �B is seen at any

other value of �.

4. Calculation of the scattered intensity

In order to elucidate further errors described in NTXRD, in

this section we note the well known result that equation (5)

can, via the method of Poisson sums, be written in terms of the

Fourier transform of the shape function of an orthorhombic

shaped crystal (sinc functions) centred on the infinite reci-

procal lattice [see equation (20) below]. By use of such shape

functions we will, in x5, show results for diffraction from

spherical crystals, which are also discussed erroneously in

NTXRD.

Furthermore, we will demonstrate that some enhancement

close to, but not exactly at, the Bragg condition can arise from

the conventional analysis of diffraction from certain planes of

a restricted set of shapes of crystals, without the need to

appeal to a new theory. By working in reciprocal space we

illustrate the origin of these ‘Bragg-like’ peaks, as well as of

the specularly diffracted radiation, and show that, contrary to

the claims within NTXRD, these types of effects are well

known.

Under the simplifying assumptions made in x1, the intensity

of radiation scattering from a crystal of N atoms is given by

Ið�kÞ ¼ Að�kÞ
�� ��2/ PN

j¼1

fj expði�k � rjÞ

�����
�����

2

; ð14Þ

where �k is the difference between the wavevectors of the

incident and scattered radiation, rj is the position of atom j and

fj is the usual atomic form factor. In order to calculate the

diffraction pattern from a finite crystal of a particular shape,
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Figure 5
A plot of �x0 as a function of � and � as calculated from equation (8).
Note this is identical in form to Fig. 3 in Fewster (2016).



we use the method of Poisson sums in three dimensions (Stein

& Weiss, 1971), which gives, for a well behaved function g,P
r2�

gðrÞ ¼
P

G2 ~��

~ggðGÞ; ð15Þ

where � and ~�� are the direct and reciprocal lattices, respec-

tively, G is a reciprocal-lattice vector and ~gg is the three-

dimensional Fourier transform of g.

We consider first a crystal infinite in extent. By writing

rj ¼ r� þ �rj, where �rj is the relative coordinate of the atom

in the basis and r� is the position of the associated lattice

point, equation (14) can be rewritten as sums over the lattice

vectors r� and the basis B:

PN
j¼1

fj expði�k � rjÞ

�����
�����

2

¼

����� Pj2B

fj expði�k � �rjÞ

" #

�
P
r�

expði�k � r�Þ

" #�����
2

: ð16Þ

At this stage, assuming that the left-hand side of the above

equation extends over an infinite crystal, we can apply equa-

tion (15), giving the result that diffraction only occurs when

the Bragg condition is satisfied:

I1 / Fð�kÞ
P
G

�3ð�k�GÞ

����
����

2

; ð17Þ

where Fð�kÞ is the geometric structure factor

FðkÞ ¼
P

j2B fj expði�k � �rjÞ.

For a crystal that is finite in extent, the sum can be extended

over the infinite lattice � by introducing a function, gSðrÞ, to

describe the shape of the crystal, such that gSðrÞ ¼ 1 within the

volume S enclosed by the surface of the crystallite, and 0

elsewhere. Equation (14) can then be written

PN
j¼1

expði�k � rjÞ

�����
�����

2

¼ Fð�kÞ
P
r2�

expði�k � rÞ � gSðrÞ

����
����

2

: ð18Þ

Thus, using equation (15) and the convolution theorem,

Ið�kÞ / Fð�kÞ
P
G

~ggS �k�Gð Þ

����
����

2

: ð19Þ

Here ~ggS is the three-dimensional Fourier transform of the

shape function (‘the shape transform’). In reciprocal space,

equation (19) has a simple geometric interpretation: it is the

convolution of the shape transform ~ggS with the reciprocal

lattice.

For the purposes of this article, we will be dealing with a

single-atom basis and we shall also assume point-like scat-

tering, such that we may assume throughout that fj and F are

independent of �k. As with the initial analysis of NTXRD, we

have also ignored the effects of absorption and extinction.

Consider a crystallite with a primitive cubic lattice of lattice

spacing a. We assume that the shape of the crystallite is

orthorhombic and that the normals to the faces of the cube lie

along the principal axes of the cubic unit cell such that the size

of the crystallite Lx;y;z ¼ Nx;y;za. The reciprocal lattice is cubic,

with reciprocal-lattice spacing 2�=a, and this is convolved with

the shape transform of the crystal such that equation (19)

yields

Ið�kÞ /

�����PG sinc Lx

2 ð�kx �GxÞ
� �

sinc
Ly

2 ð�ky �GyÞ

h i

� sinc
Lz

2
ð�kz �GzÞ

	 
�����
2

: ð20Þ

The equation above shows the link between the form used by

Scherrer [equation (5), ratios of sine functions] and a set of

sinc functions which are functions of ð�ki �GiÞ, but then

summed over all reciprocal-lattice vectors. The two forms

produce identical results, but using the approach of equation

(19) is more convenient for the present discussion, as it allows

us readily to calculate the diffracted intensity for crystallites of

arbitrary shape.

A schematic plot of the distribution of intensity in the

�kx;�ky plane of reciprocal space given by equation (20) is

shown in Fig. 6. We note that this figure is identical in form to

Fig. 6-3(1) in the book edited by Ewald (1962).

For the sake of simplicity, consider now a crystal that is

cubic in shape, such that Lx ¼ Ly ¼ Lz. Fig. 6 shows the

position �k in reciprocal space corresponding to the scat-

tering geometry of Fig. 1, where the cubic shaped crystal is set

up for diffraction from the (010) planes, which also form a

planar surface of the crystallite. Assuming that the number

of planes is large, we can assume that for regions close to

the Bragg condition G ¼ ð0; 2�=a; 0Þ dominates in the sum

in equation (20). From the geometrical construction in Fig. 6

we see that �kx = ð2�=�Þ½cosð2� � �Þ � cosð�Þ�, �ky =

ð2�=�Þ½sinð2� � �Þ + sinð�Þ�, �kz ¼ 0 so that equation (20)

becomes
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Figure 6
A plot of the intensity in reciprocal space predicted by equation (20) for a
crystal with a cubic lattice, and of cubic shape, with the orientations of the
crystal faces along the principal axes as described in the text. The incident
and scattered X-rays and Ewald sphere corresponding to the setup in
Fig. 1 are also shown.



Ið�; �Þ /

�����sinc
�Lx

�
cosð2� ��Þ � cosð�Þ½ �

� �

� sinc
Ly

2

2�

�
sinð2� ��Þ þ sinð�Þ½ � �

2�

a

� �� ������
2

:

ð21Þ

The intensity predicted by equation (21) is plotted in Fig.

2(b) for �=a ¼ 0:5 and Nx ¼ Ny ¼ Lx=a ¼ 1000. We note that

the first term in equation (21) is identical to that in equation

(5) of NTXRD [our equation (1)] for the case n ¼ 1, and

hence still gives rise to a specular peak when � ¼ �. However,

we no longer find a peak at exactly the Bragg condition as the

angle � deviates from �B. Nonetheless, we do find a peak at an

angle

2� ¼ �þ arcsin
�

a
� sinð�Þ

	 

; ð22Þ

which for small deviations from the Bragg angle, � ¼ �B þ ��,

gives a peak in the intensity distribution when the detector is

at an angle

� ’ �B þ tanð�BÞ��
2: ð23Þ

This ‘pseudo-Bragg’ peak is thus, for this particular case, a

weak function of ��, but we note that in contrast to NTXRD

we do not find a diffraction peak exactly at the Bragg angle as

the crystal is rotated away from the Bragg condition.

Recalling the error in the derivation of equation (1)

[equation (5) of NTXRD] as outlined in x3, we note that,

comparing our result with that of NTXRD, it can be seen that

if the approximation that � ¼ � is made in the second term

(but not the first) of equation (21), then the NTXRD formula,

equation (1), is recovered.

We can also see from Fig. 6 that, for values of � significantly

larger than �B, the Ewald sphere would intersect arms of the

shape function that are associated with being centred on

reciprocal-lattice vectors with ðhklÞ different from (010). We

thus plot in Fig. 3(b) the intensity predicted by the full formula

of equation (20), accounting for all reciprocal-lattice vectors

with h; k or l less than or equal to 2. As predicted, additional

peaks seen around the detector positions of 2� ’ 60� are

visible, due to the Ewald sphere crossing the ‘arms’ of the

shape transform lying between (110) and (120).

5. Geometrical interpretation and the general case

A consideration of the geometry of the shape transform shown

in Fig. 6 enables us to see why we observe a specular peak in

intensity for this particular cubic shaped crystal, why this

crystal also provides a peak in scattered intensity at an angle

close to (but not exactly at) the Bragg angle when it is oriented

away from the Bragg condition, and why in the general case

NTXRD is incorrect.

The specular peak can be explained as follows. For an

orthorhombic shaped crystal, with the facets cut as described

thus far, the sinc functions associated with the shape transform

form ‘arms’ of intensity parallel to the kx; ky; kz axes in reci-

procal space. If the reflection in which we are interested has a

reciprocal-lattice vector which lies along one of these arms

then the arms of the shape function form a chord on the Ewald

sphere (for the crystal cut as described here, any reciprocal-

lattice vector in the family {m00} will meet this criterion). As

can be seen from Fig. 6 the length of this chord will change as

we vary �, but at a scattering angle 2� ¼ 2� such that the

reflection is always specular – a point to which we will return

later.

The constructions in reciprocal space also allow us to see

why we obtain some, albeit weak, scattering at close to (but

not exactly at) the Bragg angle as this particular crystal is

rotated for scattering associated with this particular

reciprocal-lattice vector. Consider Fig. 7(a), where we show

the shape transform for our cubic crystal at the Bragg condi-

tion and slightly rotated away from it. As an arm of the shape

transform at the Bragg condition is perpendicular to the

reciprocal-lattice vector, the position where the Ewald sphere

crosses the arm of the shape transform is such that the angle of

2� at such a point is initially a slowly varying function of the

angle of rotation.
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Figure 8
A schematic diagram of the shape transform in reciprocal space for a
cubic crystal rotated such that radiation reflects from (110). Unlike for
the (010) reflection, this does not exhibit a persistent pseudo-Bragg or
specular peak in the intensity distribution.

Figure 7
The maxima of the shape transforms for a cubic crystal (a) and a spherical
crystal (b) are shown in schematic form for crystals rotated 6� from
the Bragg condition for the (010) reflection. The k0 vectors indicate the
intersection of the Ewald sphere and the shape transform maxima. The
spherical shape transform has been truncated for clarity to only show
the first three maxima.



We thus predict that diffraction from the same crystallites as

considered to date (i.e. comprising a primitive cubic lattice,

and cubic in shape with facets along the principal axes), but

now diffracting from the (110) planes, will not exhibit peaks at

the specular condition, or close to the Bragg condition when �
deviates from �B. This can be seen from a sketch of the

geometry in Fig. 8, where we can see that the arms of the shape

transform are rotated �=4 with respect to the reciprocal-lattice

vector.

This is indeed the case, and in Fig. 9(b) we show the results

of the intensity predicted by equation (20) when diffracting

from the (110) plane as a function of f as the crystal is rotated

about the (001) axis. Once more we take �=a ¼ 0:5, so that

�=d110 ¼ 0:709 and Nx ¼ Ny ¼ 1000. There is no peak in the

diffracted intensity at the specular position, and diffraction

associated with the original Bragg peak falls rapidly in

intensity as f differs from 1.

This lies in stark contrast to the NTXRD result for the same

reflection, seen in Fig. 9(a), which shows no qualitative

difference to Fig. 2(a) besides the shifting of the Bragg angle.

Finally in this section we consider diffraction from a sphe-

rical crystal. We do so as within NTXRD it is claimed that ‘the

introduction of various shapes creates a different distribution of

fringing, but the enhancement at [the Bragg angle] is still

present ’ – i.e. there is always an enhancement exactly at the

Bragg angle, and spherical crystals are explicitly considered

within NTXRD. As the Fourier transform of a solid uniform

sphere can be written in terms of the half-integer Bessel

functions of the first kind, for a spherical crystal of radius R

(where we assume R is large compared with the lattice

spacing), equation (19) can be written

Ið�kÞ /
X

G

sinðj�k�GjRÞ � j�k�GjR cosðj�k�GjRÞ

j�k�Gj3

�����
�����

2

:

ð24Þ

Thus, as can be seen from the reciprocal-space plot shown in

Fig. 7, the spherical crystal shows a completely different

pattern to that present in the cubic crystal previously

discussed. Unlike the cubic shape transform’s distinct ‘arms’

which gave rise to the specular and slow-moving peaks, ~ffsphere

exhibits ‘ripples’, which cross the Ewald sphere a large

number of times, giving rise to an extremely large number of

residual peaks around a central maximum, the exact number

of which changes rapidly as a function of crystal rotation.

The intensity as a function of f for a spherical crystal is

shown in Fig. 10 for �=a ¼ 0:5 and R ¼ 500a. This figure is

otherwise an exact replica of Fig. 2. Therefore, by the claims of

NTXRD, we should see the same enhancement at the Bragg

peak even when the Bragg condition is not satisfied, as well as

specular reflections as observed in Fig. 2. However, no such

features are observed, with only significant diffraction occur-

ring at the Bragg condition, as expected.

We note that the fact that equation (24) describes the

diffraction from spherical crystals has been recognized by

other authors (Öztürk et al., 2015).
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Figure 9
Intensity distribution contribution from the (110) reflection for the cubic crystal, using (a) the NTXRD method and (b) the method of equation (19).
Note that while the two methods produced broadly similar results for the (010) reflection in Fig. 2, for this reflection they produce very different results.

Figure 10
Intensity distribution for radiation incident at an angle � ¼ f � �B to the
(010) plane of a spherical crystal, for a variety of values of f, as calculated
from equation (24).



6. Size broadening

Thus, contrary to the claims made within NTXRD, crystals

with different shapes do not have a persistent peak at the

Bragg condition when � differs from �B. Indeed, the effects

discussed thus far were already well understood in the earliest

days of X-ray diffraction, and the widths of the Bragg peaks

have been (within the approximations of this simple model)

understood for of the order of a century. The Scherrer equa-

tion (Scherrer, 1918; Patterson, 1939) relates the peak width

(full width at half-maximum, FWHM), �ð2�Þ, to the crystallite

dimension L for nano-scale particles (L<	 0:2 mm):

�ð2�Þ ¼
K�

L cosð�Þ
; ð25Þ

where K is the Scherrer constant, a function of crystal shape

and which typically has a value of the order Oð1Þ.

Fig. 11 shows a simulation of the variation of the FWHM of

the central peak with the crystallite dimension L of a variety of

crystal shapes [cuboid (Nx 6¼ Ny), cubic (Nx ¼ Ny) and sphe-

rical] calculated using equation (19). As a comparison, the

region described by the Scherrer equation for 0:75<K< 1:4
is also plotted, and it can be seen that all three of the simu-

lations fall within this region.

More detailed analysis shows that each of these lines is

accurately fitted by the Scherrer equation (within the nano-

crystallite regime) with K values of 0.854, 0.898 and 1.156,

respectively. Furthermore, that the finite size of crystals would

give rise to diffraction away from the Bragg condition has also

long been recognized (Bragg & Lipson, 1938).

7. Rotations about two axes

As well as calculating the diffracted intensity for crystallites

rotated about an axis perpendicular to the plane containing

the source and detector, results are also given within NTXRD

for simultaneous rotations of the crystallites through angles �
about a second axis, perpendicular to the first – being parallel

to the x axis and passing through the crystal, as shown in Fig. 1.

We consider once more the cubic shaped crystal, initially set

up for Bragg diffraction from (010). We calculate the intensity

at any given scattering angle as a function of � and � from

equation (20).

We consider diffraction in the Bragg–Brentano geometry

(Bragg, 1921; Brentano, 1946), in which the detector is rotated

along with the sample, such that � ¼ �. Once more we

consider a cubic shaped crystal with a primitive cubic lattice

and set �=a ¼ 0:5. We show in Fig. 12 the intensity prediction

as a function of � and �.

The (010) peak in the scattering occurs, as expected, at the

Bragg condition, ð�; �Þ ¼ ð0:253; 0Þ, but we note that we can

also observe a number of other Bragg peaks, with the (020)

peak occurring at ð�; �Þ ¼ ð0:525; 0Þ, and finally the ð011Þ and

ð011Þ at ð�; �Þ ¼ ð0:362;
�=4Þ, respectively. The scattered

intensity that can be seen along � ¼ 0 corresponds in form to

the intensity as a function of 2� shown in Fig. 3 for n ¼ 1.

In addition to these features, we also see an arc in the

intensity distribution, passing through the Bragg condition,

such that for values of � greater than that at the Bragg peak,

for fixed � two further peaks are seen at finite �. These peaks

are easily understood in terms of the shape transform in

reciprocal space. As the shape transform associated with the

reciprocal-lattice point is rotated about the x axis, the arms of

the shape transform lying along kz intersect the Ewald sphere

for � � �B; similar arcs can be observed elsewhere in the

pattern, associated with the (020), (011) and (011) reflections,

as expected from this model.

At this juncture it would be useful for the reader to refer to

Fig. 7 of NTXRD, which we have reproduced in Fig. 13(a).

Our Fig. 12 resembles the NTXRD figure in a remarkable

fashion, with the only major difference being that the NTXRD

graph contains only contributions from (010), and hence does

not display the other Bragg peaks. Some care should be taken

in comparing the two plots, as we believe that Fewster may be

assuming diffraction from the (111) plane of silicon, which has

an f.c.c. (face-centred cubic) lattice – however the important
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Figure 11
The FWHM of the diffracted intensity for a variety of crystal sizes and
shapes calculated using equation (19). Each of these is accurately fitted by
the Scherrer equation with K in the expected region.

Figure 12
The intensity distribution for a two-axis rotation in the Bragg–Brentano
geometry is shown for a cubic crystal of dimension 0.8 mm. Four Bragg
peaks can be observed, as well as a series of arcs connecting them.



point is that in NTXRD it is stated that Fig. 7 of that article is

calculated for a fixed detector as � and � are varied. We

disagree that the sort of behaviour we observe in our Fig.

13(a), and in Fig. 7 of NTXRD, can correspond to the fixed

detector geometry; it should only arise for the Bragg–

Brentano geometry used to produce Fig. 12. Indeed, we plot in

Fig. 13(b) the prediction of equation (20) for a fixed detector

(a=� ¼ 0:5, Nx ¼ Ny ¼ 1000). As expected from any conven-

tional diffraction theory, under such conditions we then find

only significant diffraction at the Bragg position itself.

It should be noted that the reverse does not hold true: the

NTXRD prediction for a Bragg–Brentano detector does not

resemble either Fig. 12 or Fig. 13(b).

8. Conclusion

The effects that the finite size of crystals has on X-ray

diffraction have been discussed and considered since soon

after the foundation of the field. Within NTXRD mistakes are

made in summing the phases of scattered X-rays from a crystal

with an orthorhombic shape, which lead to the incorrect

conclusion that such crystals always have some peak in scat-

tering at the Bragg condition. It is also claimed that this result

holds for crystals of a general shape. As we have shown, these

conclusions are in error, and the effects that the shape and

finite size of crystals have on the diffraction pattern are well

described by conventional diffraction theory.

Whilst a study of finite crystallite size effects will no doubt

continue to be of importance in relating experimental and

computed diffraction profiles, and the experimental data

presented in Fewster (2014) and Fewster (2016) are no doubt

worthy of further study, the specific claim made within

NTXRD that simple theory predicts a peak in the scattered

intensity to occur exactly at the Bragg condition when small

crystallites are rotated away from that condition is false.
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Figure 13
The intensity distribution for a two-axis rotation for a fixed detector is
shown for a cubic crystal of dimension 0.8 mm using (a) the NTXRD
formula and (b) equation (20).
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The criticisms of my theory, as given by Fraser & Wark [(2018), Acta Cryst. A74,

447–456], are built on a misunderstanding of the concept and the methodology I

have used. The assumption they have made rules out my description from which

they conclude that my theory is proved to be wrong. They assume that I have

misunderstood the diffraction associated with the shape of a crystal and my

calculation is only relevant to a parallelepiped and even that I have got wrong. It

only appears wrong to Fraser & Wark because the effect I predict has nothing to

do with the crystal shape. The effect though can be measured as well as the

crystal shape effects. This response describes my reasoning behind the theory,

how it can be related to the Ewald sphere construction, and the build-up of the

full diffraction pattern from all the scatterers in a stack of planes. It is the latter

point that makes the Fraser & Wark analysis incomplete. The description given

in this article describes my approach much more precisely with reference to the

Ewald sphere construction. Several experiments are described that directly

measure the predictions of the new theory, which are explained with reference

to the Ewald sphere description. In its simplest terms the new theory can be

considered as giving a thickness to the Ewald sphere surface, whereas in the

conventional theory it has no thickness. Any thickness immediately informs us

that the scattering from a peak at the Bragg angle does not have to be in the

Bragg condition to be observed. I believe the conventional theory is a very good

approximation, but as soon as it is tested with careful experiments it is shown to

be incomplete. The new theory puts forward the idea that there is persistent

intensity at the Bragg scattering angle outside the Bragg condition. This

intensity is weak (�10�5) but can be observed in careful laboratory experiments,

despite being on the limit of observation, yet it has a profound impact on how we

should interpret diffraction patterns.

1. Introduction

The new theory of X-ray diffraction arose from trying to

account for inexplicable experimental observations. Neither

the conventional dynamical nor kinematical theories could

explain the measurements. The microstructure would have to

be fantastical to account for some of these observations.

Several experimental examples are included in this article that

support the theoretical interpretation. My questioning of

conventional theory started in the 1990s when using the near-

perfect diffraction space probe (Fewster, 1989) to study

polycrystalline materials and perfect semiconductors, with

work on a different description beginning in the mid-2000s. It

was clear that the observed features could no longer be

dismissed as artefacts of the instrument, requiring an alter-

native explanation of experimental data.

This article is in five sections. The first relates the new

theory to the Ewald sphere construction to give a better visual

description, which is achieved by simply translating equation

(5) of Fewster (2014) into graphical form. The second part

describes the build-up of the scattering and where the inten-
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sity is concentrated, including the simple error/misunder-

standing/assumption made by Fraser & Wark (2018). The third

section gives some experimental evidence of the persistent

intensity at the Bragg scattering angle when not in the Bragg

condition. The fourth section considers the impact of crystal

shape. The fifth section lists some of the examples that are

difficult to explain using the conventional theory that are

easily explained with the new theory.

2. The relationship of the new theory to the Ewald
sphere

The whole basis of the new theory is that a strong scattering

feature, e.g. a Bragg peak, can still be observed as the crystal is

rotated away from its position on the Ewald sphere. This

applies to all the diffraction features, e.g. thickness fringes and

crystal truncation rods, but will be weak. The distance of a

diffraction feature from this ‘conventional’ Ewald sphere

surface is given by the length of the arc of a vector (for the

feature of interest) rotated about 000 (Fig. 1). The length of

the vectors in the figure corresponds to 1/dhkl. The arcs touch

the Ewald sphere at 2�hkl with a residual amplitude given by

equation (4) of Fewster (2014). The next section explains

why there is intensity at this position. Thus, a considerable

proportion of the full diffraction pattern should be observed if

there is sufficient intensity. This is exactly what we would

expect from optical diffraction. Rotating the crystal just

increases or decreases the intensity of the features in the

diffraction pattern, e.g. Bragg peaks, thickness fringes, crystal

truncation rods, fringes from spherical crystals etc., and when

they coincide with the surface of the ‘conventional’ Ewald

sphere the intensity for that feature reaches its maximum

value. The ‘conventional’ Ewald sphere just represents the

specular condition and has no width. The new theory just

expresses that there is a residual specular contribution that

does not go to zero as soon as the feature giving rise to it is

rotated away from the optimum position on the sphere

surface.

There is also a philosophical question here: if the Ewald

sphere has no width then how can a reciprocal-lattice point

interact with it? If the crystal is stationary, the source is

monochromatic and there is no beam divergence, what would

the intensity be? This was a serious problem for Wojtas et al.

(2017) in their interpretation of XFEL (X-ray free-electron

laser) data, requiring the partial capture of a reciprocal-lattice

point and invoking angular tolerances to obtain some expla-

nation of the data. If there were too many ‘Bragg peaks’ then

they assumed that they were capturing data from more than

one crystal and rejected the data. The new theory defines a

width for the sphere surface and this dilemma does not exist.

Because it has a width then intensity will be captured away

from the Bragg condition. The new theory describes the

thickness profile and the associated residual amplitude that is

captured.

So, what evidence is there for this? Well there is plenty of

evidence, from calculating the diffraction pattern from first

principles, results from XFEL sources and even data collected

from standard laboratory sources. Let us start with the

calculated evidence from my colleague John Anderson and

presented by Fewster (2017). This considers a single-

wavelength plane wave impinging on a three-dimensional

array of point scatterers, which will form a spherical wave from

each point. When the scattering is brought together in the far

field, i.e. the waves travelling in a parallel scattered direction

are brought together, a diffraction pattern is formed. The

phases of the contributions depend on the difference in path

lengths of all the contributions at each 2� value. The first thing

to notice is that the full diffraction pattern exists (Fig. 2a).

That is not predicted in conventional theory where intensity

from a feature only occurs when it touches the surface of the

Ewald sphere. This figure is plotted on a logarithmic scale to

reveal the detail. For a real experiment the data will have a

finite dynamic range and only the strong features are likely to

be observed (Fig. 2b). These simulations reveal the fringing

due to the crystal surface boundary conditions (the shape

transform) and if a fringe is close to the Ewald sphere then it

could be more intense than the associated Bragg peak that is

more remote, e.g. Fewster (2016) and Fig. 5 below. These

calculations do not contain any complicated parameters

(wavelength dispersion or divergence etc.), yet the resulting

diffraction patterns are very similar to those observed at

XFELs, i.e. several peaks in an instantaneous image, occa-

sional row of fringes etc., depending on where the dynamic

range of these calculations is truncated. The diffraction

pattern can be indexed from the 2�B of the observed peaks.1

Studying these images in greater detail and concentrating

on the 2�B positions for the Bragg peaks, it is possible to
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Figure 1
The new theory in terms of the Ewald sphere construction. All the
reciprocal-lattice points coloured blue can form intensity at this incident
angle at their respective 2�B values (e.g. green dots) if 0 < � < 2�B. The
distance of the reciprocal-lattice point to the surface of the Ewald sphere
along an arc in � defines its amplitude, which decreases as the distance
increases. For example, 0�113 is in the Bragg condition and the amplitude is
at its maximum value, whereas 002 is weaker and 0�223 is very weak etc. The
arcs drawn for some of the reflections give a guide to the strength of the
scattering. The Ewald sphere surface can be considered to have a
thickness with a profile given by equation (4) of Fewster (2014).

1 The peak 2�B values were determined with a ruler on the diffraction image
and so could only be measured within a few % reliability, because of the peak
breadth and the influence of the interference with the fringes, e.g. in the
vicinity of the 120 peak position.



observe intensity enhancement at these angles for this single

incident angle. It must be recognized though that there will be

peak movements resulting from the interference of the

amplitude oscillations related to shape effects and those

related to the enhancement effect as � is varied. This will also

be influenced by how close their contributions are to the

surface of the Ewald sphere. The overlap of fringes from

reflections of different order will also influence the observed

diffraction pattern, which is particularly relevant for small,

perfect crystals (Holý & Fewster, 2008; Fewster, 2015, 2018).

We can separate out the shape effects by extending the

familiar description of Bragg’s law.

3. The explanation of the persistent peak at 2hB and
response to the Fraser & Wark analysis

A series of diagrams (Fig. 3) is given that explains the thinking

behind the new theory and the reasoning of Fraser & Wark to

make it clear where their misunderstanding has occurred.

A point P0 on the upper plane will be in phase with any

point in any position on the lower plane Q when in the Bragg

condition, which in turn will also be in phase with all other

points on the upper plane (Fig. 3a). When the planes are

rotated away from the Bragg condition, the point P0 will have

a close phase relationship with several points on the lower

plane, Q01, Q02, Q03, Q04 etc., and we would expect to see some

residual intensity at the specular angle (Fig. 3b). The point P0

can never be exactly in phase with a Q0 point for this

combination of � and 2� outside the Bragg condition (i.e. � =

�B). The Fraser & Wark analysis to this

point would be the same; then they

consider this angular spread of accep-

table phases combined with the density

of scattering points on the lower plane

to give rise to an intensity. I have no

dispute with this.

If we now include another point on

the top plane, which we call P1 (Fig. 3c),

then there will be another set of points

on the lower plane that have the same

relationship as for P0. We shall call these

points Q11, Q12, Q13, Q14 etc. These

scattering points on the lower plane Q1n

will have some overlap with the points

Q0n. Since there are as many scattering

points on the P and Q planes we should

pair every P point with a Q point, and

the conclusion would be the same as

before if all the P points are in phase

(Fig. 3c). This arrangement of scattering

points produces a peak of intensity at

the specular scattering angle that we can

call 2�s. This scattering angle is defined

by the crystal surface where the scat-

tered wave exits the crystal and is a

result of the boundary condition, which

requires the component of the electric field parallel to the

surface of the crystal to be continuous. This explains the

fringing associated with the crystal shape, often termed the

shape transform. If the incident angle is not equal to the Bragg

angle, then 2�s can never equal 2�B. This is the conclusion in

Fraser & Wark that I agree with; it is purely a conclusion of the

conventional theory.

What happens if the detector is moved to a different 2�
angle, whilst maintaining the same incident angle? The

description of Fraser & Wark or the conventional theory does

not consider this. The scattering does not correspond to the

specular condition (Fig. 3d) and P0 is no longer in phase with

P1 and similarly the phase relationship between the scattering

from the points P and Q has changed. Conventional theory

and that of Fraser & Wark simply assume that intensity only

exists when the points P are perfectly in phase. But what

happens if the points P scatter slightly out of phase? Is it

realistic to assume that there is no intensity in this case? This is

a major anomaly in the conventional theory and can be

interpreted as the Ewald sphere surface having no thickness.

If we postulate that the points P0 and P1 can scatter in a less

than perfect phase alignment, then we must conclude that

there is intensity outside the specular condition. This has

nothing to do with crystal shape. If the detector is moved

further the phase relationships between all the P points and all

the Q points will change again. Because the phase relationship

between all P points can be determined and every P to every Q

can be determined, the PQ pair can be paired in an arbitrary

way. It is convenient to find the PQ pair that forms a path

length difference closest to one wavelength. The phase
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Figure 2
The simulation of the diffraction pattern from a three-dimensional array of point scatterers with
dimensions 40� 39� 40 nm with point separations of 2� 3� 4 nm using a wavelength of 1.54 nm.
The whole pattern is revealed in a logarithmic plot (a). When plotted on a linear scale (b) there are
six ‘peaks’ observed. This is very characteristic of data from XFELs. Diffraction based on the
conventional theory would reveal nothing in this arbitrary orientation (these are not in the Bragg
condition). The central peak in (a) is the direct beam and is removed from the linear plot in (b), to
reveal the other peaks with linear scaling. The plots are displayed on a radius of 2� out to a
maximum of 90�. The peaks can be indexed based on their 2�B values and the restriction 0 < � < 2�B,
yet their intensities vary significantly indicating that the reciprocal-lattice points cannot all be close
to their Bragg conditions. It can be seen in (b) on a linear scale that peak intensities <�1% of the
most intense peak are not observed.



difference between P0, P1, P2 etc. is determined purely by the

incident angle � to their plane and the detection point 2�
[equation (4), Fewster (2014)], which defines the maximum

amplitude possible from the P plane for this � at 2�, i.e. A� .

A� applies to the second and all subsequent planes and the

maximum amplitude that can exist for this incident angle

occurs when all planes scatter in phase with each other, i.e.

NA� where N is the number of planes. This will only occur if

there are PQ pairings that have a path length of one wave-

length. By taking a point P on the upper plane and an incident

angle �, we search for a pairing with a Q position that will give

a path length difference of one wavelength by allowing 2� to

take on any value. Fig. 4 is a plot of the angle combinations �
and 2� where a one-wavelength path difference can exist

between a P position and a Q position. For any given incident

angle � there is a one-wavelength path difference possible at

2�B. We can consider that an incident angle below the Bragg

angle will form a specular peak at 2�s with a maximum path

length difference < � and by increasing 2� the path length

difference can be increased. Similarly, for an incident angle

above the Bragg angle a specular peak will form at 2�s with a

minimum path length difference > � and by reducing 2� the
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Figure 3
(a) The Bragg condition, where all the scattering from all the positions on both planes is in phase, so any pairing of a scattering point from one plane with
any point on another plane will be in phase. (b) When the scattering planes are rotated away from the Bragg angle a point P0 cannot scatter in phase with
any point Q at the specular scattering angle 2�s. (c) For the same incident angle and the same specular scattering angle the near-phase relationship holds
across the plane for P0, P1 etc. (d) However, if we move the detector to a different 2�, P0 and P1 no longer scatter perfectly in phase and similarly the
phase relationship associated with P and Q points will change. The phase relationship between the scattering from P and Q points can therefore be varied
by moving the detector. If there is a detector position where the path length difference is � then all the planes will scatter in phase, with a maximum value
defined by the phase sum of the amplitudes of points P0, P1 etc.

Figure 4
The distribution of path lengths equal to one wavelength (to within a very
small tolerance) from scattering points on adjacent planes. As the
tolerance is reduced it concentrates on a single value at 2�B and the other
coincidences become sparser.



path length difference can be decreased. In both cases we can

achieve a path length of � to form an amplitude of NA�.

This same analysis can be performed for any part of the

truncation rod; however, the path length difference never

reaches one wavelength but would be associated with a path

length above or below this value. The conclusion is that the

diffraction pattern is rich with information as in Fig. 2(a). This

approach ensures that all scattering centres across these

planes and by extension all planes in the stack are included.

The new theory therefore predicts that a scan in 2� over a

large range at a fixed incident angle would encounter a peak

at 2�s corresponding to the specular condition (e.g. crystal

truncation rod) and at 2�B (the enhancement or persistent

peak). This is exactly what was observed by Fewster (2016)

and further clearer examples are given in the following

section, including the measurement of the predicted arc in

Fig. 1 [example (iv) in x4].

4. Experimental evidence from laboratory sources

(i) The first example was an early test of my theory. The

sample is a large, perfect crystal wafer of 111-oriented silicon.

The incident beam (Cu K) is collimated to give an angular

divergence of 0.03� and the crystal is set to several incident

angles, �, either side of the 111 Bragg angle (�B). The scat-

tering is captured by scanning in 2� (Fig. 5a). Peaks are

observed that correspond to the intersection of the crystal

truncation rod at 2� = 2� and further peaks at 2� = 2�B for

both the Cu K� and Cu K� wavelengths for the d111 crystal

planes. The 2� = 2�B peaks are observed for incident angles up

to 6� away from the Bragg condition.

(a) How can a crystal set at an incident angle remote from

the Bragg condition produce a peak at 2�B?

(b) How can two 2�B peaks associated with different

wavelengths that require different incident angles be observed

simultaneously?
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Figure 5
(a) Several 2� scans for fixed � settings with the interpretation in (b)
based on the modified Ewald sphere construction. The spheres have
different radii: 1/�� and 1/��, centred on p and o, respectively. Consider
the 2� scan for � = 12.5� in (a) (the crystal is orientated 1.7� from the
Bragg angle �B� for the Cu K� wavelength). There is a single specular
peak (the intersection of the 2� scan and the truncation rod) that is
described in (b), where the specular contributions occur at the same 2�
but capture different positions on the truncation rod at a and b, which is
the same for both conventional and new theories. The two peaks, c and d,
correspond to the d111 plane spacing for both the Cu K� and Cu K�
wavelengths, i.e. 2�� and 2��; in the conventional description these should
not exist. The peaks at c and d can only be described with the new theory,
i.e. the persistent intensity at 2�� and 2��. The 2�� peak can be observed
up to |� � �B| � 6�. The specular peaks are sharp (they are dominated
by the proportion of the incident-beam divergence that satisfies this
condition, i.e. a small region on the sample), and the enhancement peaks
are broad (because all the incident-beam divergence directions will form
intensity at 2�B and these exist over the full footprint of the beam on the
sample. As the Bragg condition is approached the peak will sharpen
because the strongest contributions come from a smaller range of
divergence and smaller regions on the sample and dominate). The
features at the base of the specular peaks are tube focus artefacts.

Figure 6
[Fig. 3 from Fewster (2014)]: (a) the scattering pattern from�120 crystals
(or if perfectly packed 300 crystals) isolated with a 3.5 mm incident beam
that perpendicularly intersects a 1 mm-wide single layer of crystals of
LaB6 with sizes of 2 to 5 mm. (b) gives the profile with�30 crystallites or if
perfectly packed 75 crystallites (3.5 mm � 0.25 mm sample size), where
only three reflections are clearly resolved compared with all ten in the
larger sample size. The data were collected with a 0.01� divergent Cu K�1

beam from a 1.8 kW X-ray laboratory source in 35 min. The samples were
stationary throughout, so the incident beam only explored one
orientation from each crystal. The peaks are narrow and occur at the
correct 2�B positions and correspond to the interpretation where each
crystal contributes intensity as in Fig. 1.



The explanation based on the new theory is given in Fig.

5(b), and because of the large dimension parallel to the

surface the shape function is dominated by the crystal trun-

cation rod. The residual peaks at 2�B follow the prediction of

equation (4), Fewster (2014).

(ii) A very highly collimated monochromatic beam 3.5 mm

wide (horizontal with a divergence of 0.01�)2 is incident on a

1 mm-wide (vertical) polycrystalline sample to form a cross

section of 0.0035 mm2 that is one crystal thick. The average

crystal is 3.5 mm in diameter; this illuminated area and

absorption measurements (to estimate the packing density)

suggest there are �120 crystals being illuminated. The sample

is kept stationary and the scattering is captured on a position-

sensitive detector (the angular spread normal to the scattering

plane is limited to 2.3� with a Soller slit). All ten possible peaks

at their correct 2�B are observed and are sharp (Fig. 6a). The

probability of capturing one crystal in the Bragg condition is 1

in 23 000, and therefore to capture all ten is 1 in 4 � 1043.

(a) How, when the probability of observing a peak at the

Bragg condition is 1 in 100 000, can a repeat experiment with

�30 crystals form three clear peaks (Fig. 6b)?

(b) Is it reasonable to expect each crystal to be composed of

�100 000 mosaic blocks?

(c) If there are 100 000 mosaic blocks in each crystal, they

would have an average diameter of �0.075 mm. How can the

average intrinsic width for these mosaic blocks (�0.11�) be

reconciled with the measured width of 0.026�?3

The new theory has a simple explanation by building all the

weak contributions from each crystal as in Fig. 1.

(iii) This is an example of the data from the beam selection

diffractometer (Fewster, 2004). This instrument creates very

high intensity, near-‘zero’ wavelength dispersion and well

understood instrumental artefacts. The scattering from the

sample 004 reflection is captured with a single reflection 004

analyser crystal (Fig. 7a). The sample is a perfect crystal. The

combination of the analyser crystal and a slit to control the

wavelength dispersion still shows the remnants of the Cu K�2

component. In addition to the layer thickness fringes, there
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Figure 7
(a) A diffraction space map close to the 004 reflection (logarithmic scale)
from an InGaAs structure grown epitaxially on a GaAs substrate. The
data were collected with the beam selection diffractometer (Fewster,
2004), with a single reflection 004 analyser crystal (stepping in � followed
by a scan with movements in � and 2�maintaining a 1:2 ratio). The strong
fringing is associated with the layer structure (the shape transform) and
occurs along the crystal surface normal. The streak where 2� = 2�
corresponds to the incident-beam divergence and the streak along 2� for
a constant � value corresponds to the detector acceptance range (in this
case the diffraction profile of the analyser crystal). The remaining streak
at constant 2�B for varying � values is the ‘enhancement’ peak for the
substrate (as in Fig. 5b). (b) This is the extracted profile along the 2�B

enhancement that is smoothly decreasing from the peak as expected,
apart from interference of the Cu K�2 streak on the high-angle side. If all
the artefacts could be removed and the alignment improved, this could be
considered as the thickness profile of the Ewald sphere surface for this
reflection and crystal.

Figure 8
The complex scattering (logarithmic scale) close to the 113 reflection
from a Si (001) wafer, with a 46 nm epitaxial layer of Si0.21Ge0.79 on top,
obtained with a high-resolution diffractometer, courtesy of A. Kharch-
enko and J. Woitok. The fringing relates to the thickness of the SiGe
layer, which can all be explained by conventional (dynamical) theory. The
various features determined by the instrument and diffraction geometry
are given in the figure and can be related to those in Fig. 7(a). The streak
of intensity at constant 2�B cannot be explained with conventional theory
but is predicted by the new theory and corresponds to an arc in Fig. 1.

2 This divergence is based on dynamical theory, and also happens to be the
same as the geometrically derived value based on the source size and a
crystallite.

3 This is the measured width, whereas the intrinsic width is �0.0025�. An
isolated 10 mm Si crystal within a polycrystalline sample (Fewster, 2014) gave a
measured width of 0.002�, using a high-resolution diffractometer.



are the influences of the incident-beam divergence and the

detector acceptance, which are clearly revealed as streaks

emanating from the intense substrate peak. In addition, there

is a prominent streak at constant 2�B. The crystal plane

rotation is not accurately normal to the reciprocal-lattice

mesh, so this streak is inclined to the plane of the diffract-

ometer.

(a) What is the explanation for the streak of intensity at

constant 2�B as the crystal is rotated in �?

The new theory predicts this 2�B streak, its shape and how it

changes with crystal alignment. Fig. 7(b) gives an indication of

the intensity along the 2�B streak for this sample, i.e. 10�5 to

10�6 of the Bragg peak at an angle of 0.15� from the Bragg

condition.

(iv) This example uses a high-resolution monochromator

and a position-sensitive detector to study a (001)-oriented Si

wafer that has a single Si0.21Ge0.79 46 nm layer grown

epitaxially on top. The data were collected close to the 113

reflection by stepping in � and scanning in 2�, and plotted in

reciprocal-space coordinates forming an arc of captured data

(Fig. 8). The SiGe layer is tilted with respect to the substrate,4

giving a tilted truncation rod (their individual crystal trunca-

tion rods are not coincident but still interfere with each other).

The substrate gives rise to the most intense peak and the layer

gives a broad peak with fringes. The influence of the incident-

beam divergence and the 2� capture line for a fixed incident

angle can all be explained within the description of conven-

tional theory. The substrate is perfect device-grade Si and is

not mosaic. There is a very prominent arc of intensity at

constant 2�B which corresponds exactly to the substrate d113

plane spacing. This is the persistent intensity or ‘enhancement’

predicted by the new theory.

(a) Is there any explanation within the confines of

conventional theory that can explain this arc of intensity at

constant 2�B from a perfect crystal as it is rotated in �?

This arc of intensity follows the description in Fig. 1 (and

discussed later in Fig. 10). It cannot be described by any shape

function.

(v) This example is taken from a careful experiment on a

structure composed of two epitaxial layers of GaAs/InGaAs

on a GaAs substrate. The structure appears to be perfect until

it is studied in greater detail with a very high resolution

diffractometer (Fewster, 1989) (Fig. 9). There are two signifi-

cant features that are observed: a crystal truncation rod that

‘wiggles’5 and an intensity streak along 2�B associated with the

substrate. These features are a common observation in well

aligned, good quality crystals, for layer structures and blank

crystal wafers. The fringes associated with the layers indicate

that the interfaces are flat and parallel. There is interference

between the crystal truncation rod for the substrate and the

layers, which is only possible if there is significant overlap. The

intensity spreading at constant 2�B for each part of the

structure would account for this overlap and the wiggles.

(a) How can the truncation rods of the substrate and layers

interfere without some overlap to create these ‘wiggles’?

(b) What is the reason for the 2�B streak that also gives rise

to a broadened base of the substrate peak in an open detector

rocking curve?

The new theory predicts the existence of the streak in 2�B,

which in turn will account for the interference of the crystal

truncation rods to explain the ‘wiggles’. It also indicates how a

full two-dimensional diffraction space map can be simulated.

5. The impact of crystal shape

The crystal shape will modify the intensity close to the Bragg

peak, which was recognized by Fewster (2014) p. 262: ‘Hence a

powder sample that has a distribution of orientations will

create fringes associated with its size and surface shape and an

enhancement at 2�B for each crystallite plane’. The main

thrust of this theory is to concentrate on the persistent

intensity at 2�B, whereas all shape effects will modify the

intensity around the Bragg condition peak and will not form

intensity at 2�B unless by chance. Equation (5) in Fewster

(2014) can be considered as the formula for a crystal wafer

with crystal planes parallel to the surface. For other crystal

shapes, the full shape transform can be included, but the

position of the Bragg condition is unchanged. To include the

shape transform for a parallelepiped, as in the work of James

(1962) and Authier (2001), for a small crystal, would involve

extra terms in equation (5), i.e. of the form sinðNxÞ= sin x and

sinðNyÞ= sin y. Since so few crystals conform to this shape I

refer to my original statement above, i.e. any shape can be

included but the persistent intensity at 2�B still exists.
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Figure 9
The 004 diffraction space map (logarithmic scale) expanded normal to
the crystal truncation rod to emphasize the wavy streak of the 80 Å
In0.15Ga0.85As quantum well, buried in a complex AlGaAs/GaAs
structure. The other dominant feature is the streak along 2�B. When
the data were projected along 2�B, the resultant profile fitted precisely
with the simulation based on dynamical theory. Collecting data with a
high-resolution diffractometer without an analyser (a rocking curve) gave
small fringe displacements with a broadened base to the substrate peak (a
commonly observed feature, which can be associated with the 2�B

enhancement for varying �), whereas a single scan along the crystal
truncation rod gave regions of missing intensity.

4 This tilt was determined by analysing the 004 reflection at opposite azimuths
around the crystal surface normal.
5 I first considered this to be a problem with the diffractometer; however this is
reproduced on different instruments based on different mechanical config-
urations and scanning arrangements.



To explain the diffraction in the new theory compared with

the conventional theory for a parallelepiped, consider Fig. 10

(shape function A), where its shape transform has been

simplified to a cross with the tails diminishing in magnitude

further from the reciprocal-lattice point. The conventional

theory will reveal intensity where the shape transform inter-

sects the Ewald sphere surface, resulting in two peaks. In the

new theory the Ewald sphere surface has a thickness given by

equation (4) of Fewster (2014). This results in intensity asso-

ciated with all parts of the shape function and much of it will

be very weak. The two peaks as in the conventional theory

may well be the most dominant features; however, a strong

feature like the maximum in the shape transform will also

produce a peak, which may or may not be observed depending

on the measurement conditions as in the examples above.

The example given in Fig. 8 has a shape transform like B in

Fig. 10 and interacts with a different position on the Ewald

sphere surface. The arc of intensity measured corresponds

precisely to the prediction in the new theory. More details are

given in the caption.

In the new theory, a very small crystal will have a very broad

thickness profile for the surface of the Ewald sphere. This

increases the observed intensity of features remote from the

optimum position on the Ewald sphere surface; so, although

the fringing could be touching the optimum position, the main

peak in the shape transform can still dominate. This is exactly

what is observed in the simulation from a perfect parallele-

piped crystal in Fig. 2.

6. The difficulties with ‘conventional theory’

Requiring crystals to be mosaic to suppress dynamical effects

(Darwin, 1922) for the kinematical approximation to be

applied in structure determination puts a big onus on all

crystals. Is that reasonable? The number of crystals required

to form a reliable polycrystalline diffraction pattern is greater

than in a typical sample, in which case microdiffraction will not

work; but it does, so what is going on? This did not go

unnoticed by Alexander et al. (1948) who suggested crystals in

a powder diffraction sample must be mosaic; but how small are

they? De Wolff (1958) suggested that slack gearing in

diffractometers may be the cause, but high-quality diffract-

ometers of today would rule that out. Smith (1999) concluded

that the data cannot be reliable even with the numbers of

crystals used in Bragg–Brentano geometry. More recently, the

data from XFELs show that there are reflections simulta-

neously observed in a snapshot from a single crystal, which

should be a very rare event but is very common. This has led to

a plethora of complex explanations to account for the data,

e.g. Wojtas et al. (2017).

Each explanation is specific to the method by stretching the

limits of conventional theory, which is in danger of becoming

inconsistent with itself. The descriptions presented by the

early workers in this field were valid explanations for their

time, but perhaps they cannot be universally applied today.

Suppose the fundamental theory is not the complete answer,

then the results could be unreliable. Kuhn (2012) would view

the conventional theory as a powerful paradigm needing a

crisis, e.g. inexplicable results, to change it. Have we reached

that stage yet? Or can the conventional theory still reveal

reliable results? Popper (2002) suggested all theories are

waiting to be disproved and therefore should be falsifiable.

The assumptions in conventional theory have increased to

accommodate these diverse experiments to prevent falsifica-

tion. This situation is not favoured by the law of parsimony

(Occam’s razor), which would prefer the theory with the

fewest assumptions, because it is easier to falsify.

7. Conclusions

The new theory explains the experimental results. There is, as

far as I know, no alternative explanation within the confines of

conventional theory. Those who can understand my descrip-

tion as well as the conventional theory should be able to

compare these two approaches and make a judgement on

which best describes their data. The new theory could be

considered as defining a thickness profile for the Ewald sphere

surface. In conventional theory this surface has no thickness,

placing all the experimental interpretation on changing the

shape of the reciprocal-lattice point, e.g. mosaic crystals.

Shape effects cannot explain the results described above and

therefore the conventional theory can only be an approx-

imation. I consider my theory to be a better description of
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Figure 10
The interaction of different shape functions with the Ewald sphere. A
gives rise to peaks ac1 and ac2 where the tails touch the Ewald sphere; this
is the interpretation based on the conventional theory. In the new theory
there is another term [equation (4), Fewster (2014)], so that three peaks
appear an1, an2 and an3 (an3 is the enhancement peak) and there is also
residual intensity associated with the whole of the shape function. The
shape function given at B corresponds to the sample used in Fig. 8, i.e. for
a crystal wafer with a truncation rod normal to the surface with a very
short arm parallel to the surface. At this orientation the conventional
theory predicts no peaks since no part of the shape function touches the
Ewald sphere. The new theory predicts a peak at 2�B (bn1) for all
orientations in �. The reciprocal-space map B can be compared with the
measured data from Fig. 8 (inset) to show how a single extracted 2� scan
away from the Bragg condition forms enhanced intensity at 2�B.



X-ray diffraction. The criticisms of my theory by Fraser &

Wark are therefore based on an invalid argument.
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