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Like any shopper, thermodynamics loves a bargain: the most active degrees of freedom in

a chemical species will always be those that are cheapest to excite. In isolated molecules,

the lowest-energy degrees of freedom are translations and rotations. On the other hand,

in the simplest crystal structures, such as metals or alkali halides, atomic-scale translation

and rotation are no longer possible, and the lowest-energy degrees of freedom become

long-wavelength acoustic modes.

Many more complex solids, however, fall somewhere between the two. Consider, for

instance, silicates made up of a network of corner-sharing SiO4 tetrahedra. It will be

energetically expensive to distort individual tetrahedra, but much cheaper to allow the

network to flex about the oxygen atoms that connect their corners. Thus the most

thermally accessible modes will include those that involve no deformation of the tetra-

hedral geometry: the so-called rigid-unit modes.

Rigid unit mode analysis has been applied not just to the silicates (Hammonds et al.,

1996) but to other materials ranging from oxides to cyanides (Goodwin & Kepert, 2005)

and more complex coordination polymers (Zhou et al., 2008), in both crystalline and

amorphous phases. This analysis was central to the first geometric explanations of

negative thermal expansion – the property whereby a material contracts, rather than

expanding, when heated (Pryde et al., 1996; Dove & Fang, 2016) – and of associated

anomalous thermodynamic properties such as pressure-induced softening (Fang & Dove,

2013). One particularly longstanding area of applicability is the distortions of the

perovskite structure, which has been an active research field since the well known first

observations of soft modes in SrTiO3 (Shirane & Yamada, 1969) and catalogue of the

phases that can arise from such modes ‘freezing in’ (Glazer, 1972).

How can we calculate the rigid-unit modes available to any given structure? A simple

and effective answer was given by Giddy and co-workers (Giddy et al., 1993) and

implemented in their program CRUSH (Hammonds et al., 1994). In this method, each

atom joining two rigid units is split in two and joined by a stiff spring of equilibrium

length zero. The dynamical equations can then be constructed exactly as for any other

potential model. Since real atoms are not divided neatly into halves in this way, most

solutions to this model will be meaningless, but those at zero frequency – where the

springs are unstretched and each atom remains whole – will correspond exactly to the

RUMs.

In this issue, a team led by Campbell proposes an elegant alternative to this approach

(Campbell et al., 2018). Representing each rigid-unit rotation as a vector, they linearize

the effect of each rotation on each shared atom, effectively considering an infinitesimal

rotation. Since adjacent polyhedral units must rotate in such a way that they continue to

have any shared atoms in common, the result is a system of linear equations. In the

language of crystal structure refinement, one might say that this algebraic approach uses

constraints to prevent shared atoms from being split, in contrast with the CRUSH method

that uses restraints to the same end (Fig. 1). The team further refine their approach by

using group-theory techniques to represent the problem in terms of symmetry-mode

amplitudes rather than individual rotations.

The result is an easy and widely applicable methodology to calculate the RUMs

associated with any specified set of interconnected rigid units, within the confines of a

chosen subgroup. The authors demonstrate their approach on both classic (perovskite,

�-quartz) and less well studied (tungsten bronze) systems, revealing in the latter case

RUMs that have not previously been reported.
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Two aspects of the authors’ proposed further work are

noteworthy. First, they anticipate incorporating their work

into the widely used ISOTROPY software suite (H. T. Stokes,

D. M. Hatch & B. T. Campbell, http://iso.byu.edu). The exis-

tence of user-friendly web-based tools such as this and the

Bilbao Crystallographic Server (Aroyo, Perez-Mato et al.,

2006; Aroyo, Kirov et al., 2006) has brought the exceptional

power of computer-based symmetry analysis to widespread

use among the crystallographic community. Computer

analyses have historically provided several corrections to

results achieved ‘by hand’, for instance in the distortion modes

of perovskites (Howard & Stokes, 1998), and may yet do so

again in this case.

Second, the authors suggest that their method may be

extended to the ‘quasi-RUMs’. Despite the attractiveness of

the model’s neat division into RUMs and distortive modes, of

course in a real solid there is a continuum between coordi-

nation polyhedra remaining rigid and distorting drastically. In

fact, modes involving only slight distortions are often equally

important to a material’s thermodynamic properties, espe-

cially when they extend over a larger region of the Brillouin

zone than the RUMs. Application of the new method to such

modes would therefore be especially welcome.

Interest in anomalous thermodynamic behaviour, from both

scientific and technological viewpoints, shows no signs of

abating. Similarly, displacive phase transitions, especially

those leading to ferroic phases, continue to be highly relevant.

Identifying RUMs and their relatives will thus continue to be

an important task, and Campbell et al. have contributed a neat

and effective tool for this purpose.
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Figure 1
(a) The CRUSH approach to identifying rigid-unit modes involves stiff
springs joining the two hypothetical halves of an atom. (b) The new
approach of Campbell et al. instead requires zero mismatch (or
sufficiently small mismatch in the case of quasi-RUMs) between the
rotating adjacent units in order to avoid the type of splitting illustrated.
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