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Estimating the structure factors in X-ray diffraction
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This article takes the concepts of the ‘new diffraction theory’ [Fewster (2014).

Acta Cryst. A70, 257–282] and examines the implications for the interpretation

of experimental results and the estimation of structure factors. Further

experimental evidence is included to justify the conclusions in the theory,

showing that the residual intensity at twice the Bragg angle is a diffraction effect

and not associated with the crystal shape. This ‘enhancement’ effect is

independent of whether kinematical or dynamical theories are applied and

can lead to a clearer understanding of how the dynamical effects are suppressed

in imperfect crystals. By applying the idea that the higher-order peaks are due to

path lengths of n�, it is shown that ‘systematically absent’ reflections in the

conventional theory may not be absent. Because this new theory considers the

intensity to be more distributed, it suggests that the entire structure factor can

be difficult to capture by experiment. This article suggests some routes to

achieve a good approximation of the structure factors for typical methods of

data collection. Any measurement of intensity with background removal will

exclude some of the distributed intensity, again leading to an underestimate of

the structure factors, and therefore the missing intensity needs to be estimated.

1. Introduction

X-ray diffraction analysis has relied to an increasing extent on

the accuracy of intensity measurements to reveal important

structural information in complex molecules, e.g. functional

groups in proteins etc. It is therefore crucial to ensure that the

derived structural model closely resembles reality, which can

only be achieved if the description of diffraction is sufficiently

complete. Also, the reliability of the measured data can only

be estimated with confidence if a complete interpretation of

the diffraction pattern is available.

The most complete description of diffraction should include

all the scattered amplitudes from all the atoms at all detection

positions, including atomic vibrations and re-scattering. All

the amplitudes will be coherently related which makes the

inverse problem of estimating the structure from the diffrac-

tion pattern a difficult challenge. Also, any unforeseen

microstructure features may confuse the interpretation. The

dominating features in a diffraction pattern are the strong

peaks that Bragg (1913) associated with specular (mirror)

reflections from crystal planes. This explanation assumes that

all the atoms aligned in these planes concentrate their

amplitudes at one position and can be simply interpreted, or

that the amplitude diminishes from the peak due to size effects

(James, 1962; Authier, 2001) etc., which is the shape transform.

Soon after Bragg published his explanation, Darwin (1914)

recognized that the scattering from a set of parallel planes

introduces re-scattering from the underside of planes above.

This led to the diminution of the incident beam and explained

the width of the profile. Ewald (1916, 1917) and Laue (1931)

took this further and introduced the polarizability of the
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electron density by the incoming electromagnetic wave by

considering the crystal as a series of dipoles (Ewald) and a

distributed electron density (Laue). These two works form the

basis of the interaction of the incident wave and the crystal.

The electric field vector component parallel to the surface

must be continuous which defines the location (2�) of the

scattered intensity for a given incident angle (James, 1962;

Fewster, 2015 etc.). This gives the profile shape and its direc-

tion, e.g. crystal truncation rods.

There have been many attempts to apply dynamical theory

to imperfect crystals. Initially, a perturbation approach to

dynamical theory (Penning & Polder, 1961) was applied but is

only relevant to small distortions. Takagi (1962, 1969) took the

argument further by introducing a locally varying polariz-

ability, which pushed the bounds of dynamical theory closer to

modelling less-than-perfect crystals. Kato (1976) introduced

ideas of regions that scatter incoherently, which is analogous

to the mosaic crystal model initiated by Darwin (1922) and

pursued further by Zachariasen (1945). This has become the

standard description of an imperfect crystal and the justifica-

tion for using kinematical theory. Dynamical theory associated

with the works above is far from perfect, because it is calcu-

lated assuming there are only two significant waves (two-beam

dynamical theory), i.e. the incident and scattered waves. The

introduction of other reflections and surface scattering are

ignored. Introducing more beams adds significant complexity

(Holý & Fewster, 2003), but because the conventional

approach defines the structure factor for a specific region (or

layer in that article) the interfaces are too abrupt which is

evident in perfectly periodic multilayer structures. Holý &

Fewster (2008) took the argument further by calculating the

scattering from very thin lamellae (0.01 of the unit-cell

dimension) and using Fresnel’s equations. The whole profile

can be calculated over the whole length of the truncation rod,

allowing the introduction of imperfections. Chantler (1992a,b)

has explored dynamical theory of bent perfect and imperfect

crystals by splitting the calculation region of the crystal into

thin lamellae and blocks which really gives an indication of the

complexity required to model the scattering. The first of these

articles reviews some of the published approaches to model-

ling less perfect crystals.

The general assumption in conventional theory is that an

imperfect crystal is mosaic, which is also discussed by Authier

(2001) where the defects break the coherence to produce an

agglomeration of mosaic blocks scattering incoherently with

respect to their neighbours. Each perfect block then scatters

dynamically, and because of their small size the dynamical

effects are small. The diffraction from each block is weak, has

broad features and fringing related to its shape and can be

explored by varying the incident angle. Each of these incident

angles will give intensity further away from the 2�B position,

i.e. the crystal shape adds intensity around but not at 2�B.

The description by Fewster (2014, 2016) is different in that a

single incident angle will form a full diffraction pattern. For

example, a crystal plane rotated away from the Bragg condi-

tion will still show a peak at 2�B, but one that is considerably

weaker. This applies to all the fringes associated with a peak.

This can be understood by imagining the conventional Ewald

sphere surface to have a thickness and the ‘conventional’

construction represents the maximum interaction with the

reciprocal lattice (in the conventional theory the Ewald sphere

surface has no thickness). The surface thickness is represented

by a scattering vector (of magnitude 1/dhkl) being swept

around the reciprocal-lattice origin 000 (Fig. 1). The thickness

profile is given by Fig. 15, Appendix A, which is a plot of

equation (4b) in Fewster (2014). The final diffraction pattern

for this single incident angle is therefore nearly complete, with

the intensity being defined by how far the reciprocal-lattice

features are from the optimum orientation for that incident

angle, i.e. the surface of the conventional Ewald sphere.

This description explains the existence of a polycrystalline

diffraction pattern from very few crystals and the observation

of multiple peaks in X-ray free-electron laser (XFEL)

diffraction patterns. This is completely independent of the

shape, because the associated fringing will be subject to the

same description, i.e. there will be a tail of intensity along its

own 2�B. This full diffraction pattern will be very weak and

rarely seen except at very intense sources like an XFEL. This

diffraction pattern is observed in simulations of point scat-

terers (Fewster, 2017), with the maximum intensity of a

feature occurring when it intersects the surface of the

conventional Ewald sphere, but it remains visible remote from

this condition (Fig. 16 in Appendix A). A small crystal will

have a broad Ewald sphere surface thickness profile, such that

the contrast in the pattern will be reduced, making the peaks

in the pattern dominate over the fringes, which may be closer

to the ‘conventional’ Ewald sphere surface, as in Fig. 16. This

is simply a pattern that we would expect in optical diffraction.

These arcs of persistent intensity at 2�B remote from the Bragg

condition can be directly observed with laboratory sources
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Figure 1
The new theory in terms of the Ewald sphere construction. All the
reciprocal-lattice points coloured blue can form intensity for this given
incident angle at their respective 2�B [subject to the conditions contained
in Fewster (2014), i.e. 0 < � < 2�B]. The distance of the reciprocal-lattice
point to the surface of the Ewald sphere along the arc in � defines its
amplitude. The amplitude decreases as the distance increases, e.g. 0�113 is in
the Bragg condition and the amplitude is at its maximum value, whereas
002 is weaker and 0�223 is very weak etc. The arcs drawn for some of the
reflections give a guide to judge the strength of the scattering by the
distance along the arc from the Ewald sphere maximum value. We can
consider the Ewald sphere surface to have a thickness with a profile given
by Fewster [2014, equation (4)].



and they are covered in the next section. This description

removes the necessity to modify the microstructure to ensure

some unexplained feature touches the surface of the conven-

tional Ewald sphere.

Now that serial crystallography at synchrotrons and XFELs

has come to the fore, there are a few clues that there is

something amiss. Perhaps one of the most fascinating is the

variability in the measured intensity, which has been termed

‘partiality’ and has been accommodated by additional para-

meters associated with variations in beam flux, crystal size,

spectral dispersion (Kirian et al., 2010). Other parameters to

account for this variability are the inclusion of mosaic spread

and a modified Lorentz factor (Kabsch, 2014). White (2014)

has introduced a nest of Ewald spheres from which the

‘partiality’ can be estimated by the distance of the reciprocal-

lattice points to the Ewald sphere. A similar approach has

been taken by Uervirojnangkoorn et al. (2015) etc. More

recently, Wojtas et al. (2017) have explained the observation of

several diffraction peaks by partial capture of a reciprocal-

lattice point; from this we might ask how does the surface of

the Ewald sphere with no thickness capture intensity from a

diffraction pattern? Also, in a detailed study of the correlation

of the intensity from different reflections Öztürk et al. (2015)

have concluded that the scattering from nanocrystals can

contribute to several Laue spots simultaneously and to

account for this the authors have included a modified Lorentz

factor. These additional parameters may accommodate the

observations in serial crystallography, but are they a true

description? Kroon-Batenburg et al. (2015) have monitored

the R factor whilst introducing the modified Lorentz factor

and ‘partialities’ resulting in better agreement, but it was also

recognized that the model parameters associated with parti-

ality still require improvement. More recently Sharma et al.

(2017) have proposed a correction for the observed asym-

metric distribution of intensities for a given hkl captured in

serial crystallography. If the observed intensity is purely

associated with the Bragg condition, then each intensity

contribution will correspond to somewhere on the peak profile

and would be symmetrical. The intensity distribution calcu-

lated from the new theory is asymmetric because of the high

number of weak contributions. The methods to account for the

observations are becoming very complex.

A similar story exists in polycrystalline diffraction, where

the number of crystals required to provide a reliable data set

becomes unrealistic (Smith, 1999). Earlier attempts to account

for the diffraction profile have suggested slack gearing in

instruments (Wolff, 1958) or mosaic crystals to capture all

these reflections (Alexander et al., 1948). These concerns have

largely been forgotten, but with improved instrumentation

and with the vast range of crystal types being examined these

explanations seem even more unlikely.

2. The new theory and experimental evidence

An X-ray plane wave incident on a plane of atoms will create a

spherical wave from each atom, and at large radii along a

specific direction these waves will appear planar. All the

amplitude contributions that travel along a specific direction

2� will combine and form a resultant amplitude depending on

all their relative phase relationships. At the Bragg condition

the maximum amplitude from each plane in a stack is in-phase

with all the others, resulting in maximum intensity. As the

stack of planes is rotated, the phase is no longer optimal, and

the amplitude falls but still forms a peak at the specular

scattering angle1 for the incident wave angle � to these planes.

This results in the characteristic Bragg peak and fringes. In the

conventional theory, there is one scattered wave kH for each

incident wave k0 that is related to the scattering vector S to

give the familiar relation kH = k0 + S, where both k vectors

have a magnitude 1/� and S has a magnitude of 1/dhkl at the

Bragg angle.2 This can be graphically represented by the

Ewald sphere with the conclusion that only features touching

its surface can form intensity.

As shown by Fewster (2016), a simple structure that would

be expected to form a Bragg peak and a crystal truncation rod

forms two peaks for an incident angle remote from the Bragg

condition: one at the truncation rod intersection and the

second at 2�B for the substrate. As the planes are rotated the

intensity associated with the intersection of the truncation rod

moves as expected (the specular peak) but the peak at 2�B

remains stationary. The explanation given by Fewster (2014,

2016, 2017) is that there is persistent intensity along 2�B for the

feature of interest, which can be understood by considering

the phase relationships between scattering points along each
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Figure 2
The distribution of path lengths equal to one wavelength (to within a very
small tolerance) from scattering points on adjacent planes. As the
tolerance is reduced it concentrates on a single value at 2�B and the other
coincidences become sparser. This example calculation uses a crystal
plane separation of 0.31356 nm and wavelength of 0.1541 nm, giving rise
to a Bragg scattering angle 2�B = 28.45�.

1 The parallel component of the electric field must be continuous across the
crystal surface boundary and this defines where the scattered wave will be
observed for the orientations away from the Bragg condition. This results in
crystal truncation rods normal to the surface plane of a large crystal wafer
regardless of the inclination of the plane to the surface. The shape of the
profile can be calculated with dynamical theory.
2 This is the general case and does not include the Renninger (1937) effect:
different Bragg diffracted intensities combining to form intensity at a
systematically absent position (Umweganregung) and the suppression of
diffracted intensity from this effect (Aufhellung).



plane and on adjacent planes. For a given incident angle � in

the specular condition but not at the Bragg condition, e.g. on

the crystal truncation rod, all points along a single plane are

scattering in-phase but they are not in perfect phase with the

planes below. If the detector is moved to a new position where

2� 6¼ 2�s, then the points along each plane no longer scatter in

perfect phase towards this new 2� position. This new ampli-

tude from each plane is A�. The path

length difference of scattering from

points on adjacent planes is also altered

by changing 2�. For example, an inci-

dent wave below the Bragg angle will

give a weakened intensity at the spec-

ular angle (e.g. on the crystal truncation

rod) and the path length difference is

always < �; if the detector angle 2� is

increased the path length can be

increased up to �. At this position all the

planes scatter in-phase to give an

amplitude of NA�. Similarly, an inci-

dent angle greater than the Bragg angle

will have a path length difference > � at

the specular angle and by reducing the

detector angle 2� the planes can be

brought back into phase to give an

amplitude of NA�. The 2� when all the

planes are brought into phase is defined

by d and � for each incident angle �.

The 2� angles where the path length is �,

for a given d, are plotted in Fig. 2 for all

possible incident angles �, based on

Fewster (2016). This is a numerical

calculation that has a path length

tolerance which is reduced to home-in

on the angles and positions that are

satisfied exactly for all incident angles.

The scattering angles that satisfy this

condition always exist at 2�B, whilst

the distribution of points elsewhere

becomes sparser and more random as

the tolerance reduces.

There are good reasons to assume

this enhancement at 2�B occurs in

polycrystalline diffraction experiments,

for example the data presented in

Fewster (2014) which are reproduced in

Fig. 17 of Appendix A. In that example

the probability of observing a single

Bragg peak in the conventional theory

from this small sample is 1 in 100 000,

and of observing three peaks is there-

fore 1 in 1015. If we assumed that the

crystals were imperfect and that the

conventional theory was correct then

we would require 100 000 mosaic blocks

in each 3.5 mm crystal, and the blocks

would be �0.075 mm in size with an

intrinsic diffraction width of �0.11�. This width is 4� that

measured for this standard sample (Fewster & Trout, 2013).3

These requirements make the conventional theory explana-

tion very unlikely. The diffraction width (along 2�) has been
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Figure 3
(a) Several 2� scans for fixed � settings with the interpretation in (c) based on the Ewald sphere
construction. The spheres have different radii: 1/�� and 1/�� , centred on p and o, respectively.
Consider the 2� scan for � = 12.5� in (a) (the crystal is orientated 1.7� from the Bragg angle �B� for
the Cu K� wavelength). There is a single specular peak (the intersection of the 2� scan and the
truncation rod) that is described in (b), where the specular contributions occur at the same 2� but
capture different positions on the truncation rod a and b, which is the same for both conventional
and new theories. The two peaks corresponding to the d111 plane spacing for both the Cu K� and Cu
K� wavelengths, i.e. at 2�� and 2�� , should not exist according to the conventional description. The
peaks at c and d can only be described with the new theory. These enhancement peaks can be
observed up to |� � �B| ’ 6�, which are given in (b) where a baseline for the intensity level from
either side of each peak reveals more intensity above the line than below. This is very close to the
observational limit for this experiment. The specular peaks are sharp (they are dominated by the
proportion of the incident-beam divergence that satisfies this condition, i.e. a small region on
the sample), and the enhancement peaks are broad (because all the incident-beam divergence
directions will form intensity at 2�B and these exist over the full footprint of the beam on the sample.
As the Bragg condition is approached the peak will sharpen because the strongest contributions
come from a smaller range of divergence and smaller positions on the sample, and dominate).

3 If the intrinsic diffraction widths are compared, then this factor is closer to
40�.



measured to be 0.002� for a �10 mm Si crystal isolated (in

diffraction space) from a polycrystalline sample (Fewster,

2014), i.e. there is no evidence of mosaicity. The new theory

predicts intensity at several diffraction peaks simultaneous

with varying intensity (Fig. 1) and does not require vast

numbers of crystal orientations. Each contribution may be

small but as the number of crystals increases the sum can lead

to a measurable diffraction pattern, with the very rare inten-

sity spike when the Bragg condition is encountered (Fig. 17,

Fewster 2014; Fig. 18 and Fig. 13, Fewster & Andrew, 1999).

This persistent intensity at 2�B can be observed directly. A

larger perfect crystal h111i orientated wafer of Si is orientated

away from the 111 Bragg condition. The incident angle was set

to various values, in the range �7� < (� � �B) < +4� and the

detector was scanned across a large range to include 2�B

(Fig. 3a). Intensity peaks are observed when 2� equals 2� and

when 2� equals 2�B for both the Cu K� and Cu K� wave-

lengths, e.g. when � = 12.5� where (� � �B) ’ �1.7�. Peaks at

2�B for the Cu K� wavelength can still be observed at 6� from

the Bragg angle. The sharp peaks at 2� correspond to the

intersection of the Ewald sphere and the crystal truncation rod

(predicted by the conventional theory) which comes to a

maximum at the Bragg condition (� = �B ’ 14.2�).

The presence of these 2�B peaks cannot be explained by

conventional theory, since the reciprocal-lattice feature should

just be a point with a truncation rod perpendicular to the

surface. Within the new theory this is explained (Fig. 3c).

Another example is given in Fig. 4(a) where the shape effects

are prominent, the instrument function contributions are clear

and the only unexplained feature within the conventional

theory description is the arc of intensity corresponding to 2�B

for all measured �. The interpretation based on the Ewald

sphere is given in Fig. 4(b). This 2�B streak is prominent

because of the geometry and the careful alignment of the

‘reciprocal-lattice point’ to be in the plane normal to the

rotation axis about 000 (Fig. 1). When the alignment is not so

exact the streaking falls off more rapidly with angle (Fig. 18 in

Appendix A). Originally these streaks were dismissed as

unexplained artefacts of the experiment, but they can all be

explained by the new theory.

Since the structure-factor amplitude Fhkl relates to the total

scattering from the set of hkl crystal planes, then all the

scattering associated with these planes should be included to

determine it. If Fhkl is assumed to only exist near the Bragg

condition, then it will be an underestimate.

3. The diffraction from imperfect structures

The conventional theory requires the crystal to be mosaic to

account for data and to account for the suppression of dyna-

mical effects. Crystals might be mosaic, but if this is a

requirement then we are taking a risk in accepting that the

kinematical approximation is valid. It is certainly reasonable

to accept that crystal planes could be bent to accommodate

point defects, dislocations and precipitates, but to assume that

the mosaic blocks must be sufficiently small to suppress

dynamical effects is difficult to accept.

Considering that the crystal planes are curved but their

separation is roughly constant, then the Bragg condition will

be satisfied for regions on the crystal planes where the incident

angle � = �B. In a different region the Bragg condition is not

satisfied but there will still be intensity at 2�B but it is weaker,

as illustrated in Fig. 1. The different incident angle will also

give rise to intensity at the specular position at 2� somewhere

on the crystal truncation rod. In another region, the scattering

will also contribute again to 2�B; however the contribution to

the specular peak will move up or down the crystal truncation

rod because of the different incident angle to the plane for

that region. The specular peak therefore broadens and

becomes less well defined, as regions of different curvature are

probed, and forms a broad background peak (Fig. 5). Any

specific location on the truncation rod will also be subject to

the ‘enhancement effect’ (Fig. 1), but because a change in
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Figure 4
(a) The complex scattering from the 113 reflection from an Si (001) wafer,
with an epitaxial layer of SiGe, obtained with a high-resolution
diffractometer, courtesy of A. Kharchenko and J. Woitok. The fringing
relates to the thickness of the SiGe layer, which can all be explained by
conventional (dynamical) theory. The various features determined by the
instrument and diffraction geometry are given in the figure. The streak of
intensity at constant 2�B cannot be explained with conventional theory
but is predicted by the new theory and explained in panel (b).



rotation is likely to bring another part of the crystal truncation

rod closer to the optimum orientation (touching the conven-

tional Ewald sphere) this effect will be masked. This

description gives us an indication of how a polycrystalline

sample diffracts by forming intensity consistently at 2�B and

forming the background intensity. In the case of XFEL data

the variability in the intensity at 2�B can be understood by the

misorientation of the crystals from the Bragg condition, and

since the incident intensity is so strong crystals do not have to

be close to the Bragg condition to observe peaks at the Bragg

angle.

4. The impact on data collection

A single crystal diffracting in a random orientation is very

unlikely to satisfy the Bragg condition for any reflections, but

it will contain diffraction peaks that are very weak. This is

observed at XFELs because of the very high incident-beam

intensity. As the number of randomly orientated crystals

increases more regions of the full diffraction pattern are

explored which may contain a few Bragg peaks. The mean

intensity of each diffraction feature becomes more repre-

sentative of the full diffraction pattern. In polycrystalline

diffraction all these individual patterns from each crystal are

superimposed on each other to give the characteristic Debye–

Scherrer rings with fluctuating intensity (Fewster & Andrew,

1993, 1999). This description explains the fluctuating intensity

at XFELs. The diffraction pattern either from polycrystalline

samples as the sum of contributions around the Debye–

Scherrer rings or combined intensity contributions from

individually indexed XFEL snapshots will stabilize when the

full distribution of intensities has been explored and more

contributions just confirm this (the central limit theorem). This

is reached quite quickly in polycrystalline diffraction because

of the large number of crystals in a typical experiment. In

XFELs the intensity from each crystal is captured sequentially

and will follow the same principle, making it possible to esti-

mate the reliability in the intensities from the snapshot data.

Structure analysis with single crystals collects the intensity

near the Bragg condition for each reflection. This will not

capture the full intensity distribution and could be subject to

errors. In all cases the true mean of the intensity distribution

will represent the intensity Ihkl.

Since the intensity associated with a set of crystal planes is

distributed, it is important to isolate the contribution asso-

ciated with a specific hkl reflection. If data, as in single-crystal

structure analysis, are only captured close to the Bragg

condition, the ratio of the means of the full intensity distri-

bution to those for the region of the capture will give a scale

factor to obtain Ihkl . In structure analysis the structure-factor

Fhkl amplitude is assumed not to be influenced by others, i.e.

any overlap of their amplitudes from extended diffraction tails

is ignored. The same assumption is made here, although an

understanding of where the Ihkl for one reflection ends and

that from another begins along a truncation rod is helpful.

The atomic plane specularly reflected intensity will exist for

scattering angles 0 < 2� < �, and each incident angle will also

contribute intensity towards 2�Bn in the range 0 < � < 2�Bn (or

� � 2� < � < �/2 if 2�Bn > �/2). This reflected intensity profile

from a stack of crystal planes will have peaks whenever the

path length is an integer number of wavelengths, n�, the first

when n = 0 which corresponds to F000 at 2� = 0. The second

peak occurs when n = 1 and occurs at 2� = 2�B1 which

corresponds to the first-order Bragg condition in conventional

theory. There will also be further peaks at n = 2, 3 etc., which

are harmonics from path lengths of 2�, 3� etc. and do not

reveal additional lengths in the structure (Fig. 6a), i.e. this is

the profile from a single set of periodic planes calculated using

equation (16) in Appendix B3. The mid-positions between the

peaks give a reasonable range that can be associated with each

Fhkl. It is reasonable to assume that the intensity contributions

from the overlapping amplitudes at these mid-points will have

little influence on the required Fhkl values.

Fig. 6(a) corresponds to a very simple structure. By adding

more planes of atoms with the same periodicity and combining

their amplitudes the resulting intensity is changed dramati-

cally (Fig. 6b) [equation (17) in Appendix B3]. By building the

diffraction pattern in this way the electron density around the

atoms can be included rather easily by adding thin layers

representing the profile of the electron-density distribution.

Thermal vibrations can be included in the same way to

observe the change in the profile and the suppression of the

maxima. For example, by taking a Si h111i orientated wafer

and calculating the intensity along the truncation rod along

111 we obtain an intensity profile as in Fig. 7(a). This assumes

the atomic planes have no thickness. If now the atoms have a

spherical distribution of electrons, the lateral average of the

electron density will be symmetrical either side of the planes

and, by taking a thin layer of low electron density equidistant

on both sides of each plane, the intensity profile is modified

(Fig. 7b). This example gives intensity at the 222 reflection that

is ‘systematically absent’ in the conventional theory, which is

often interpreted as asymmetry in the bonding (Bragg, 1921),
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Figure 5
The formation of a diffraction peak in an imperfect crystal represented by
undulating planes due to defects. The atomic planes scatter intensity in a
direction defined by the crystal truncation rod, the specular angle 2�
(red), and towards the enhancement angle 2�B (blue). The specular peak
is therefore broad, appearing as background, and the enhancement peak
is sharp. Only for those scattering directions where the specular and
enhancement contributions overlap (purple) will the Bragg condition and
dynamical effects become important. For imperfect crystals, this overlap
becomes a small fraction and I = |Fhkl|

2 is a reasonable assumption.



but any analysis should include this diffraction effect. This has

also been confirmed with dynamical theory, using Fresnel’s

equations based on Holý & Fewster (2008) and Fewster

(2015). Thermal vibrations will redistribute the electron

density, reducing the peak intensities while maintaining the

profile width and increasing the background (Guinier, 1963).

This modifies the profiles along the specular direction, and the

2�B enhancement feature will be scaled in proportion. Further

consideration is given in the calculations that follow later.

If the Bragg peaks are not on the same crystal truncation

rod, then the interference described above will be weaker. In

conventional theory there is no simple mechanism for them to

overlap or interfere. However, for a wafer crystal with planes

not accurately parallel to the surface plane with an epitaxial

layer on top, some ‘wiggles’ in the overall truncation rod can

be observed (Fig. 19 in Appendix A). This can be interpreted

as the interference of the crystal truncation rods of the

substrate and layers, which is possible because of the signifi-

cant overlap of the persistent intensity in 2� for each contri-

butor.

The following section presents a procedure for estimating

the mean intensity to reveal the ‘structure factor’ for subse-

quent structural investigations.

5. The estimation of the intensities based on this
concept

The calculation of the resultant amplitudes in every direction

for a very large number of atoms is currently impractical (even

considering a crystal composed of structure-factor ampli-

tudes). The approach by Fewster (2014) considers the scat-

tering in terms of an ordered array of unit cells.

Ideally the calculation of perfect crystals should invoke

dynamical theory; however the strength of these effects varies

with the structure and crystal size. To illustrate the argument,

it is assumed that the intensities all follow the kinematical

approximation. If the relevant information is known (perfec-
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Figure 7
(a) This is the full calculated 2� profile from N = 100 crystal planes a
distance d = 0.31356 nm apart and scattering strength of unity, interlaced
with planes at 0.75d also of strength unity. This is the pattern expected
from Si along the h111i direction. (b) If the atoms are not confined to the
planes but their electron density spreads symmetrically from these
positions, then the 222 diffraction peak appears. This simulation includes
additional scattering planes at 0.002d, 0.748d, 0.752d and 0.998d, with
scattering strengths of 0.1.

Figure 6
(a) This is the full calculated 2� profile from N = 100 crystal planes
(parallel to the surface plane) a distance d = 0.5654 nm apart and
scattering strength of unity, i.e. there is one length scale (Cu K�1). The
conventional diffraction peak indices are given as 100, 200, . . . , 700 and
in the new theory these peaks are harmonics associated with the path
lengths �, 2�, . . . , 7� between adjacent planes. The intensity peak values
correspond to N2 and have not been modified by any factors. The
truncation points used to define the range for individual structure factors
occur in the dips between the peaks. (b) Inserting three more planes with
the same periodicity but displaced by a fraction of this period at 0.25d,
0.5d and 0.75d and having scattering strengths of 0.9, 1.0 and 0.9,
respectively, changes the profile dramatically. Individually each of these
planes would reproduce the same profile as in (a), with the maxima
modified by the scattering strength. However, when their amplitudes are
combined, the peaks associated with path lengths of integer wavelengths
n = 1, 3, 5, 7 result in their amplitudes cancelling – with n = 2, 6 the
intensities are suppressed and the intensity for n = 4 is increased to (4N)2.
This example profile is characteristic of a zincblende structure along the
h100i direction.



tion, size, structure) then when the Bragg condition is

encountered dynamical theory should be applied as in the

work of Fewster (2014). These ‘perfect crystal’ examples

should be considered in terms of nearly perfect crystals (where

the dynamical effects are weak, i.e. some small plane curvature

> the intrinsic diffraction width, e.g. �10 arcsec). It is also

worth noting that a divergent incident beam will also add to

the intensity but will not be at the Bragg condition and

therefore not dynamical, which can be understood from the

incident-beam divergence shown in Fig. 18.4 The total inten-

sity Itotal scattered from a set of crystal planes is therefore

assumed to be / |Fhkl|
2 and the total number of unit cells.

Not only are the contributions to |Fhkl|
2 dispersed, but the

measurement method can lead to oversampling, which is most

pronounced when the scattered waves leave the crystal plane

at low angles such that the detector slit will capture a large

range of sample tilts �X compared with higher exit angles:5

�X� ¼ sin�1 sa

2R sinð2� ��Þ

� �
: ð1Þ

R is the sample-to-detector distance and sa is the width of the

axial slit. The angle of tilt X of the crystal plane has an axis

parallel to the crystal plane and in the plane of the incident

beam and the crystal plane normal (Fig. 20 in Appendix A)

(Fig. 10, Fewster, 2014). There will also be a spread in the

incident-beam divergence, ��, and the �2� acceptance at

the detector, for a single measurement position I2��X . The

contributions in �� and �2� are compressed into a smaller

area at low and high scattering angles, requiring more steps to

capture the intensity, which is compensated for with the term

1/sin 2�. The proportion of the intensity incident on a plane

varies as sin �X , provided it is totally immersed in the beam.

�X is the incident angle on a plane tilted by X. The calculation

of the measured intensity within the bounds of 2�, � and X of

the experiment can then be written as

Imeas calc

Z
2�

Z
�

Z
X

sin �X

1

sin 2�
I2��X dX d� d2�: ð2Þ

In single-crystal analysis the intensity is measured close to the

Bragg position, where the incident-beam divergence is fixed,

� ’ �, X ’ 0 and the ‘out-of-diffraction-plane’ capture by the

detector sa is small compared with R. Equation (1) approx-

imates to 1/sin �, the sin � term cancels in equation (2) and the

1/sin 2� term remains, as expected.

The intensity at a point I2��X , for a series of N crystal planes

of dimension (Lx � Ly) a distance d apart from a perfect

crystal at an angle of 2� to the incident-beam direction without

measurement aberrations, is given by [equation (9), Fewster,

2014]

I2��X /

����
�

sinfN½�d
� ð2 sin �Þ � n��g

sin½�d
� ð2 sin �Þ � n��

�

�

�
sinf�Lx

� ½cosð2� ��XjÞ � cos �Xj�g

�Lx

� ½cosð2� ��XjÞ � cos �Xj�

�

�

�
sinð

�Ly

� fsin½tan�1ðtan �0j sin XÞ�gÞ
�Ly

� fsin½tan�1ðtan �0j sin XÞ�g

�����: ð3Þ

�0j is the incident angle to the crystal plane along the X axis.

The plane normal is tilted by X with respect to the detection

position which is on the locus of the angle 2� (Fig. 20 in

Appendix A). �Xj is the actual incident angle to the plane at

this tilted angle X [equation (6), Fewster 2014].

The first term can be considered as a shape transform,

corresponding to a flat crystal wafer with the planes parallel to

the surface, which has a maximum value at the Bragg angle.

The width is the same as that given by Scherrer (1918) and can

be modified for different shapes by using the average number

of planes Nhkl, e.g. Wilson (1963), Fewster (2015). The direc-

tion of this broadening was discussed earlier, which gives the

full fringe pattern around the Bragg condition peak. The

impact of not including all these fringes is not a problem

provided the same dynamic range is assumed during the data

collection; this is covered in x7. So as not to deviate too far

from traditional methods, the structure factor is assumed to

represent the full scattering for each reflection, i.e. Fhkl . The

integral of I2��X should therefore equate to |Fhkl|
2.

The second term gives the magnitude of the scattering

reflected from a single-crystal plane (the Ewald sphere surface

thickness profile), which has a maximum value of unity when

2� = 2�Xj .
6 The third term takes account of the combination

of scattering points and their phases on an inclined plane,

which also has a maximum value of unity. The derivation of

the first two terms is given in Appendix B1 and the third in

Fewster (2014). Equation (2) can be used to calculate the

intensity in the measured region and the total intensity that

could be measured from this set of crystal planes. The ratio

makes it possible to scale the measured intensity and deter-

mine Itotal and hence the structure factor:

Itotal ¼

R
2� all

R
� all

R
X all sin �X

1
sin 2� I2��X dX d� d2�R

2� region

R
� region

R
X region sin �X

1
sin 2� I2��X dX d� d2�

� Imeasured region: ð4Þ

The denominator is set to have the same divergence, over-

sampling etc., as in the experiment to obtain Imeas_region . The

numerator represents the full intensity scattered above the

crystal plane without oversampling and instrumental influ-

ences. The experimental measurement of this full intensity is

impractical because by its very nature it will be entangled with

the scattering from other crystal planes.
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4 A change in the incident-beam direction changes its own 2� = 0 position.
5 This can be understood from powder diffraction rings, where the same lateral
slit size will capture a bigger angular section of the ring at low angles of exit
than at high angles. Conventional powder diffractometry applies a 1/sin �B

term and assumes that all the intensity is from the Bragg condition.

6 This is the specular condition and corresponds to the 2� angle associated with
the � angle that gives rise to it (see footnote 1). At the Bragg condition 2� =
2�, and when the crystal planes are parallel to the surface. Later it will be seen
that the profile along 2� has little influence on the analysis.



6. The nature of this calculation

The full calculation as in the work of Fewster (2014) is very

computer intensive and a short-cut procedure is given here. As

shown in Fig. 8(a) most of the intensity is along X = 0 and the

‘banana-shaped’ contribution where �Xj = �. �Xj (< �0j) is the

projected angle where X 6¼ 0, such that as �0j is increased

there will be a point when �Xj = � and this occurs when

Xbanana ¼ cos�1 1

sin �0j 1þ 1
tan2 �

� �0:5

" #
: ð5Þ

The X = 0 contribution corresponds to the term(2) in equation

(3) with �Xj = �0j , and term(3) = 1. The two ‘banana-shaped’

contributions above and below X = 0 correspond to term(3) in

equation (3), with the locus of the maximum intensity, given in

equation (5), occurring when term(2) = 1. To calculate the

total intensity at a specific 2� value that can be associated with

the structure factor, the whole intensity over all of X and �
needs to be estimated by independently determining the mean

values of term(2) and term(3).

This has been achieved in Fig. 8(a) by sampling the intensity

at random � and X values and superimposing the capture area

of the experimental method. Much of the intensity in Fig. 8(a)

is close to zero and ignoring this will not significantly alter the

mean value; it can be compared with Fig. 8(b). It is necessary

to choose a suitable capture length in X, which also allows all

the analyses to be compared. The capture length �XCL was set

to 0.1�, so for example the intensity at X = 0, where � < �, will

be diluted by 0.1/180 etc. The number of �XCL in � is labelled

Nu. Any oversampling will therefore be digitized to this

precision. The overall mean intensity that represents the

structure factor will be represented by

ðmeanðtermð2ÞÞ sin �0 þ 2�meanðtermð3ÞÞ sin �Þ�XCL=Nu

ð6Þ

where X is set to Xbanana or 0 if � < � to evaluate term(3). The

refractive index of the crystal defines the minimum and

maximum � values, such that below a critical angle, which is

set to 0.25� in these examples, the incident beam is totally

externally reflected and conveys no structural information,

and for very small exit angles the scattered intensity cannot

emerge from the set of crystal planes.

To calculate the intensity at a specific 2� value in a poly-

crystalline diffraction experiment, the data collection proce-

dure must be considered. The axial slit at the detector of

dimension sa at a distance R from the sample captures a

different range in X following equation (1). At very small exit

angles from the crystal plane 2� � �, the intensity associated

with term(2) where X = 0 is captured almost regardless of the

misorientation in X since �X� ! �/2, as sin(2� � �) !

sa/2R. The intensity scale factor at each �0j position is there-

fore �X�/�XCL , whereas the intensity associated with the

‘bananas’ occurs at � = � and is displaced around the ring and

has a constant scale factor of �X�/�XCL . The appropriate

expression of the captured intensity is

ðmeanðtermð2ÞÞ sin ��X�=�XCL

þ 2�meanðtermð3ÞÞ sin ��X�=�XCLÞ=Nu: ð7Þ

The ratio of equations (6) and (7) gives the scaling factor to

extract the structure factor from a polycrystalline diffraction

pattern.

In serial crystallography, a peak is identified and measured

which can appear anywhere around the 2� ring (the full ring

corresponds to � = 2�, where � is the angle around the

Debye–Scherrer ring, Fig. 20). The identification process will

almost certainly isolate the peak from a crystal plane when X

= 0. However the peak will have a finite width in X and

therefore the intensity capture from isolating, indexing and

measuring the integrated intensity will correspond to term(2)

with a small angular or intensity range associated with

term(3). The odd spots associated with the ‘bananas’ are most

likely to be classified as artefacts and not measured. The

intensity factor is similar to equation (7) except that term(3) is

truncated; it is assumed that this is 1� in the following exam-

ples, which equates to sa/2R in equation (6) and with � = �.
The detection level for term(2) should also be considered,

which will be covered in the examples below:

ðmeanðtermð2ÞÞ sin �þ 2�meanðtermð3ÞÞ sin �Þ=Nu: ð8Þ

Since the intensity from single crystals is collected close to the

Bragg condition, the mean intensity factor is the same as

equation (8), except that the dispersed intensity is truncated

close to the Bragg condition through background subtraction.

The truncation of the intensity at different levels, as would be

the case when measuring weak and strong diffraction peaks,

will impact on the consequent analysis and is considered in the

examples below.

7. The impact of the 2h measurement range

The above discussion relates to the intensity determined at

one 2� position, whereas any measurement will integrate the

intensity around the diffraction peak. But how much of the

intensity should be included either side of the peak along 2�?
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Figure 8
(a) The calculated distribution of intensity in � and X at a specific 2�
angle taken from Fewster (2014). This plot includes the oversampling and
instrumental aberrations expected from a polycrystalline diffraction
experiment, which is indicated by the smearing near the small exit angle
when � ’ �/2. (b) is a schematic of the regions of maximum, and
dominating, intensity used in the calculations in this article, prior to any
oversampling or other experimental influences.



To apply conventional structure determination methods a

representative value for each of these individual peaks

requires an estimate for the range over which the intensity

should be isolated.

It is possible to assign an intensity associated with

Fhkl(n) over the range 2sin�1[(2n � 1)(�/2)/2d] < 2� <

2sin�1[(2n + 1)(�/2)/2d] with the minimum of interference of

adjacent peaks (see Fig. 6a). The conventional theory assumes

that the relevant intensity is associated with the length scale

d/n = �/(2sin �) with n = 1, and it assumes there is just one peak

associated with this length scale, which differs from this

explanation.

Since it is in general impractical to capture intensity even

over this limited 2� range, the purpose here is to see whether it

is possible to obtain a good estimate of the intensity associated

with Fhkl. The intensity is calculated within this range and

compared with a truncated region close to the peak using

equation (3) while keeping term(2) and term(3) constant. This

has been calculated with peaks centred on 2�B values from 2�

to 175�. The integrated intensity from the measurement range

2�B � �2� to 2�B + �2� has been compared with that

obtained over this range to give the proportion of the intensity

associated with the structure factor. Fortunately, this propor-

tion is constant over the full range of 2�B values for all the

crystal sizes studied from 1 to 250 mm, provided each

diffraction peak is truncated at the same dynamic range of

intensity. This ratio is 0.987 for intensity truncated at the 0.1%

level, 0.96 at 1% and 0.886 at 10%. Clearly this must be

considered when comparing intensities captured with different

levels of truncation, which could for example lead to an

underestimate of the structure factor for weak diffraction

peaks without compensation.

As discussed earlier, thermal vibrations do redistribute the

intensity along this 2� line and their influence could be

considered in two ways. Either simulate the profile and

compare the impact of different ranges of capture, or more

simply apply the conventional thermal parameter to the

calculations here, which corresponds to a specific 2� value.

This normal application of the thermal parameters is a

reasonable step since all other influences along the 2� line

have little effect on the intensity ratios, provided the trunca-

tion points are identical.

8. The influence of structural imperfections

The intensity maps in Fig. 8 assume the sample is perfect;

however this is unlikely to be the case and we need a method

of generating the intensities from imperfect crystals.

In the imperfect crystal calculation, the Lx dimension is split

into random lengths with different tilts to model the crystal

planes that are not flat and each experiences a different inci-

dent angle. The equation and its derivation are given in

Appendix B2. The mean of these lengths is defined by the

defect separation, and the tilts are related to the size of the

defects. The dimensions of these regions are drawn from a

Weibull prior distribution (Fig. 9a) for every intensity point

evaluation to give a large variation of possible defect

separations, and the tilts are drawn from a Gaussian distri-

bution. It is assumed that the dimensions in the two ortho-

gonal directions are the same, whereas the orthogonal tilts are

uncorrelated. The Weibull distribution is very versatile and

used in particle size and failure analysis distributions etc.; it

gives a shape that could represent the distribution of defect

separations.
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Figure 9
(a) The Weibull distribution, where the proportion of defects = (k/ �)(x/ �)(k�1) exp[�(x/ �)k] with parameters � = 1 and k = 2. The basic curve is
produced with x ranging from 0.001 to 3 mm, which is then scaled by (the mean defect size)/(proportion of defects) to give (a). This is used as the prior
distribution for the dimension of the regions with varying orientations within an imperfect crystal. A Gaussian distribution is used as the prior
distribution for the orientation of these regions. (b) and (c) show examples of the changes in the intensity profiles along � and Xbanana , perfect (red) and
when defects are introduced (blue) for a 3 mm crystal, at a diffraction peak of 2� = 30�. The distribution of distance between defects is given in (a) with an
orientation FWHM of 0.58� (� = 0.25�).



In the examples below the Gaussian prior distribution was

set to a range of full width at half-maximum (FWHM) values

[0.0�, 0.58� and 1.16� (� = 0.0�, 0.25� and 0.5�)], and the centre

of the Weibull distributions were varied from 0.01, 0.1 and

1 mm for the 1, 3 and 10 mm imperfect crystals. The modifi-

cation of the profile due to imperfections is illustrated in Figs.

9(b) and 9(c). Without a detailed analysis, these parameters

are in general unknown, so either the microstructure should

be estimated through measurement (as in the single-crystal

analysis below) or as done here some judgement is made on

various levels of imperfection and their impact on the inten-

sities. These calculations put no restriction on the coherence

length of the source or the regions over which the crystals are

considered to scatter coherently. The contributions across a

distorted plane are assumed to be in-phase, although if the

coherence length of the source is limited then the regions or

combinations of parts of regions can be added coherently and

their intensities summed.

These calculations assume that the interplanar spacing is

unchanged; however this is unlikely. Although the parameter

space starts to explode, it is possible to explore the influence of

fluctuations in d on the integrated intensity along 2�. The

formulae for these calculations are given in Appendix B3 with

a high strain level of 1% (maximum random variation in d

with depth). The ratio of the integrated intensities obtained

close to the peak compared with those over the range repre-

senting the structure factor is constant for 0 < 2�B < �, and

results in the same ratios as given in the previous section for

the perfect structure.

9. Obtaining structure factors: examples

This section describes various scenarios that indicate the

importance of reconsidering the conventional approaches.

9.1. Comparing the full and short-cut calculations

The first task is to ensure that the approximation compares

with the calculations based on the full simulation, i.e. Fig. 8(a)

compared with Fig. 8(b). The comparison is achieved by

calculating the oversampling in polycrystalline diffraction as a

function of 2� for the two approaches. In Fig. 21 of Fewster

(2014), the estimation of the oversampling compared with the

conventional 1/sin � dependence indicated a significant

deviation at low 2� angles and this is replicated in the ‘short-

cut’ calculation, determined from equations (6) and (7). The

oversampling in Fig. 21 of Fewster (2014) is normalized,

because of the nature of the calculation, and only an

approximate comparison made, and the effect is similar. The

calculation in Fewster (2014) gave a slightly larger difference

than contained here.7 These ratios are plotted in Fig. 10 as a

function of 2�, and correspond to the multiplication factor for

Imeas_calc in equation (4) for a polycrystalline diffraction

experiment with 10 mm perfect crystals and a Soller slit of

0.04 radians. Both calculations indicate that the intensities in

polycrystalline diffraction lead to a greater oversampling of

the intensity for low 2� peaks, i.e. the conventional ‘1/sin �’

term is too small and will suggest that the structure factors in

this region are overestimated. This short-cut calculation is a
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Figure 10
(a) shows the oversampling in a polycrystalline diffraction experiment based on the conventional theory, i.e. 1/sin �, given in black, compared with the
calculated oversampling based on the new theory using the simplified calculation. The overlapping profiles include 10, 3 and 1 mm perfect crystals in blue,
red and green, respectively (Cu K�1) and 10 mm perfect crystals with Mo K�1 radiation, in magenta. (b) shows the percentage difference in the resulting
extracted intensities between the conventional and new theory. The labelling of the profile colours is the same as in (a). (c) The influence of defects on
the scaling factor: for a 3 mm perfect crystal (red), a crystal with a mean of 0.01 mm misorientated regions (based on the Weibull prior distribution and
represents the separation between defects) with a FWHM of 0.58� (blue) and 1.16� (green) based on a Gaussian prior distribution. Different defect
separations made no difference to the profile. The black profile is the 1/sin � term. The presence of defects seems to have no influence on the scaling
factor.

7 This approach is more transparent and a much more practical route to
obtaining better estimates of the intensities. The present calculations take
seconds or minutes depending on the defect description, whereas the original
calculations took weeks of computer time assuming the crystals were perfect.
There is a small error in Fewster (2014), which may have led to an
overestimate of the oversampling but the impact, if any, is difficult to assess
without excessive amounts of work. The correction of the error would bring
the oversampling closer to the results presented here, so it is reasonable to
assume that the present calculations are closer to the truth and are much
easier to check. The full calculations are fraught with difficulties (faster
computers and better coding would help) so are not repeated, but importantly
the nature and sense of the oversampling compare well in both calculation
approaches.



good approximation for estimating the relationship between

the measured data and the structure factor. This deviation

compared with the conventional 1/sin � will be most

pronounced in analysing polycrystalline materials with large

lattice parameters, e.g. proteins.

9.2. Polycrystalline diffraction

The calculation in Fewster (2014) and that described in the

preceding paragraph is for perfect crystals, whilst in this

section the influence of wavelength, crystal size and imper-

fections is explored. The same calculation above is repeated

for Mo K�1 radiation, which is approximately half the wave-

length of Cu K�1 , and the profile is unchanged (Figs. 10a and

10b). This shows that harder radiations, which shift the

diffraction peaks to lower 2� values, will create a larger

deviation in the structure factors compared with the conven-

tional 1/sin � term.

The parameter space in combining crystal size and defects

is large, and the following analysis provides some broad

conclusions. The scaling parameters have been calculated

for three crystal sizes (1, 3 and 10 mm) and a range of

imperfections drawn from prior distributions based on

crystal regions of 0.01, 0.1 and 1 mm, and separated by

mean orientations of 0.58� and 1.16�. Fig. 10(c) shows the

systematic error in the intensities for deriving the

structure factors compared with the conventional

1/sin � function, for 3 mm crystals with both angle orientations

for the 0.01 mm typical defect separation. It is reassuring

that the systematic error is consistent and is independent of

these parameters.

The reliability will depend on the number of crystals

contributing to the diffraction pattern, and the conclusions are

the same as those given in the following section on serial

crystallography.

9.3. Serial crystallography

As well as the influence of different sizes and imperfection

levels, it would be useful to know how many crystals are

required to obtain a reliable intensity estimate for each Fhkl

value.

The influence of crystal size and imperfections changes the

distribution of the intensities measured, as can be seen in

Fig. 11. The mean value of the total scattered intensity for

imperfect crystals (� = 0.25�, 0.01 mm mean distance between

defects) is 3% below that for a perfect crystal, i.e. the mean of

the total intensity is very similar for imperfect and perfect

crystals. But if the intensity is only measured close to the peak,

e.g. to within 1% of the peak intensity in a perfect crystal,

�4% of the intensity will be missing and �6% for imperfect

crystals (for all these crystal sizes with respect to the mean). If

a reflection is weak and can only be measured to within�10%

of its peak value, the missing intensity amounts to �11% for

perfect crystals and �37% for imperfect crystals. Thus,

measuring the intensity to within two orders of magnitude will

reduce the structure factor by �3%, or if the intensity is only

measured to within one order this results in a �20% reduc-
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Figure 11
These are the calculated distributions of the integrated intensities at 2�Bn = 30� with Cu K�1 , for a set of crystal planes in random orientations, for three
crystal sizes. The maximum intensity (the rightmost data point in each histogram) corresponds to the Bragg condition, � = �Bn. The mean intensity gives
a good representative parameter for the total scattering from these planes. The ‘true mean’ (red line) associated with the total scattering is approximately
constant for perfect and imperfect crystals (� = 0.25�) for all crystal sizes (�3% fall in intensity). If the intensity is just captured near the peak over two
orders of magnitude the mean values fall, and the structure factor is underestimated by 2% for perfect crystals and 3% in imperfect crystals. If the data
are only captured over one order of magnitude, then the structure factor is underestimated by 5% for perfect crystals and by 20% for imperfect crystals
(the green line in the figure). This calculation includes 5 000 000 orientations to ensure the profile is fully converged.



tion. Fortunately, these proportions are practically constant

over 2�, but combining weak and strong reflections needs

more thought, which is considered in the next section.

This distribution makes it possible to estimate the number

of crystals required in serial crystallography to achieve a

reliable intensity value (Fig. 12). Suppose there are N crystals

in an experiment, then the sum of all the

measured intensities for a given hkl

divided by N will give an ‘estimated true

mean’ value; however the reliability of

this estimate may not be a good repre-

sentation when compared with that

from a very large number of crystals, as

presented in Fig. 11. The reliability of

this ‘estimated true mean’ can be judged

by randomly sampling N crystal orien-

tations from this large population of

intensity values and calculating an

‘estimated true mean’ value to compare

with the ‘true mean’. Repeating random

sampling many times (20 000 in this

example) will produce a distribution of

the ‘estimated true mean’ from N crys-

tals for comparison with the ‘true mean’

(Fig. 12a). This distribution gives an

estimate of the reliability in obtaining

the ‘true mean’ from a single measure-

ment with N crystals and therefore the

reliability in the structure factor. This

distribution clearly shows that many

more perfect crystals are required to

achieve any reliability in the structure

factor, compared with imperfect crystals

(Fig. 12b).

This analysis has been applied to

different sizes of perfect and imperfect

crystals. The metric used is the median and interquartile range,

which are more appropriate than the mean and standard

deviation (�) because these distributions are not necessarily

Gaussian except at higher N. When the mean and median

converge the interquartile range represents �0.67� to +0.67�.

Fig. 12(c) gives the interquartile range divided by the median
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Figure 12
(a) The mean values of integrated intensity calculated for a 3 mm perfect crystal at 2� = 30�, from a crystal in a random orientation, for increasing
numbers of contributions. These curves give the spread in the calculated estimated mean values. As the number of contributions increases the spread in
the estimated mean narrows and centres on the true mean value, but even for 50 000 contributions the reliability in measuring the mean is poor. (b) This
is case for an imperfect 3 mm crystals (� = 0.25�), where the mean is much better defined because of the suppression of the peak and increase in the
dispersed intensity. (c) When the interquartile range (Q3–Q1) over the median decreases the confidence level increases and the true mean intensity
becomes reliable. This plot shows that this ratio reduces with the number of crystal orientations being explored for three sizes of perfect and imperfect
crystals, for 2�Bn = 30�. Clearly, as the defect level increases and the crystal size reduces, fewer numbers of crystals are needed to determine a reliable
intensity value.

Figure 13
High-resolution diffraction space maps of different diffraction peaks from a high-quality (a) and
poor-quality (b) lysozyme crystal each of a few hundred micrometres (crystals courtesy of E. H.
Snell in 1996). These maps obtained with the multiple-crystal diffractometer, described in Fewster
(1989, 2015), can be used to estimate the crystal quality from the FWHM in � to calculate an
approximate intensity distribution (Fig. 14). The estimation will make assumptions regarding the
number and therefore dimensions of the regions of similar curvature; however, as discussed in the
text, if the regions scatter with a coherent relationship the size broadening effects will have less
impact on the FWHM and the curvature will dominate, i.e. the number of regions in the calculation
is not critical. With this assumption, the crystal plane curvature is equivalent to 3.2� in (b) and 0.01�

in (a). The inclined diffraction spot in (b) results from curvature of the crystal planes normal to the
figure resulting in a projection, revealed by three-dimensional reciprocal-space mapping (Fewster,
2015). This tilting in two dimensions also makes this map projection unreliable for obtaining precise
2� values.



as a function of the number of crystal orientations for 10, 3 and

1 mm crystals. When this ratio has a low value then the

confidence in the data is high. This shows that small imperfect

crystals will give more stable intensities, but of course imper-

fect crystals will form weaker peaks and the question of

dynamic range of intensity becomes important.

This may not be the only intensity measurement error and it

will need to be combined with source intensity fluctuations

and detector response etc. to estimate the reliability in the

evaluated structure factor.

9.4. Single-crystal analysis

The typical crystal dimensions are much larger for this type

of analysis, and this gives the opportunity to evaluate the

perfection and feed this into the analysis. An example is given

for two �250 mm-sized lysozyme crystals of good and poor

quality (Figs. 13a and 13b) which have the equivalent FWHM

values of 0.011 and 3.2�, respectively. Intensity distributions

were calculated at one of these 2�B values (Figs. 14a and 14b)

using the width for the poorer-quality crystal (Fig. 13b), and

assuming a perfect crystal, like that given in Fig. 11. There are

several conclusions from this analysis. The ‘true’ mean inten-

sity has dropped by 18% for the imperfect crystal compared

with the perfect crystal, and an insufficient dynamic range of

intensity captured will give significant errors in the structure

factors. Further details are given in the figure captions. The

large difference in the mean scattered intensity for the perfect

and imperfect crystal could possibly be explained by the

inadequacy of the assumption that the scattering is confined to

the regions given in Fig. 8(b) rather than Fig. 8(a). It should

also be remembered that this calculation does not include all

the scattering, e.g. below the crystal plane which becomes

more significant with high levels of imperfection.

The problem of weak intensities can be resolved by either

truncating the intensity at an equivalent angular range for all

diffraction peaks, then removing the background and

accepting that the data will be noisy and limit the structural

detail, or modelling the profile based on the shape of the

stronger peaks and estimating the values of all the peaks over

the same dynamic range. This latter approach obviously has

strengths in extending the measurement of peak intensities

with noisy data, and perhaps extending the resolution of the

structural model.

10. Concluding remarks

This new theory does have an impact on the assignment of

intensity to the structure factors in polycrystalline diffraction,

serial crystallography and single-crystal analysis.

Polycrystalline diffraction: the summation of the intensity at

a specific 2� will allow a good representation of the structure

factor but it is oversampled. The oversampling differs from the

conventional 1/sin � term, which becomes more extreme for 2�
values below �12�. This deviation is independent of the

wavelength used or the degree of crystal perfection. The

difference in the intensity scaling factor is >25% at 5� and falls

to 1% at 25� in the new formulation compared with the

conventional term. The structure factor at low 2� derived from

the measured data based on the conventional theory is

therefore too large.

Serial crystallography: the variable intensity from snapshots

can be explained as a diffraction effect and each crystal will

form several diffraction peaks at a single orientation. The

intensity captured close to the expected peak position will give

a highly asymmetric distribution that is a function of the

crystal size and quality. When sufficient crystals have been

analysed the mean intensity is Gaussian distributed and the

uncertainty is defined (central limit theorem). The mean

intensity should give a good direct relationship with the

structure factor. The most reliable mean values occur for small

imperfect crystals.

Single-crystal analysis: for large crystals typically used in

this analysis the proportion of the uncaptured distributed

intensity is significant for high levels of imperfection. This is
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Figure 14
(a) The calculated intensity distribution assuming the crystal is a perfect
lysozyme crystal, with a dimension of 250 mm. (b) The calculated intensity
distribution based on the � profile width for the lysozyme crystal given in
Fig. 12(b). The inset gives the � profile generated from these calculations.
The mean value has fallen by 18% for the imperfect crystal compared
with the perfect crystal, so this should be considered. The mean value of
capturing the intensity over two orders of magnitude and the true mean
result in a very small loss of 1.8% in structure factor, but only capturing
intensity over one order of magnitude results in a structure factor loss of
5% for perfect crystals and 27% for imperfect crystals. 2�Bn = 36.75�.
Therefore, both the crystal quality and dynamic range of the measure-
ment are important to obtain good structure factors.



also the case for smaller crystals. The most reliable analyses

should model the intensity distribution to obtain a scaling

factor for accurate structure-factor determination. The

missing intensity from weak diffraction peaks should be

compensated since the errors associated with this could be

considerable.

This theory has an impact on how the diffraction pattern is

formed, including the background, the scattering from

imperfect materials, accounting for the 222 diffraction found

in diamond-type structures etc. This theory can make the

analysis easier, e.g. removing many of the corrections applied

in serial crystallography, providing a simple way of probing the

electron density and making a clearer judgement on the

reliability of results from randomly orientated crystal data.

The peaks in a diffraction pattern are formed from n� path

length changes and not from fractions of the repeat distances

(d/n) as usually assumed in the conventional theory; it is

therefore the amplitudes of the harmonics associated with

each set of contributing planes that give rise to the peak

intensity observed. These simulations indicate the limit on the

validity of the structure factor for modelling structures.

APPENDIX A
Further diagrams and experimental evidence

Further explanatory diagrams and experimental evidence are

given in Figs. 15–20.

APPENDIX B
The amplitude calculation method

This appendix gives the derivation of the equations used in the

above calculations, both for perfect and imperfect crystals.

B1. The intensity from a perfect sample

The amplitude A scattered from a row of M + 1 atoms is

given by

A ¼ aþ a expð�i	Þ þ a expð�i2	Þ þ a expð�i3	Þ þ . . .

þ a expð�iM	Þ ð9Þ
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Figure 15
The variation in the specular (amplitude)2 for several crystal plane
dimensions as the incident angle � is changed from the optimum value at
� [from Fig. 4(b), Fewster, 2014]. This profile is for perfect crystals (with
full coherence across the plane) and can be considered as the thickness
profile of the Ewald sphere, equation (10) in Appendix B.

Figure 16
The simulation of the diffraction pattern from a three-dimensional array
of point scatterers with dimensions 40 � 39 � 40 nm with point
separations of 2 � 3 � 4 nm using a wavelength of 1.54 nm. The whole
pattern is revealed in a logarithmic plot (a). When plotted on a linear
scale (b) there are six ‘peaks’ observed. This is very characteristic of data
from XFELs. Diffraction based on the conventional theory would reveal
nothing in this arbitrary orientation (these are not in the Bragg
condition). The central peak in (a) is the direct beam and is removed
from the linear plot in (b), to reveal the other peaks with linear scaling.
The plots are displayed on a radius of 2� out to a maximum of 90�. The
peaks can be indexed based on their 2�B values and the restriction 0 < � <
2�B, yet their intensities vary significantly indicating that the reciprocal-
lattice points cannot all be close to their Bragg conditions. It can be seen
in (b) that on a linear scale that peak intensities <�1% of the most
intense peak are not observed.

Figure 17
[Fig. 5 in Fewster (2014)]: (a) the scattering pattern from�120 crystals (or
if perfectly packed 300 crystals) isolated with a 3.5 mm incident beam that
perpendicularly intersects a 1 mm-wide single layer of crystals of LaB6

with sizes varying from 2 to 5 mm. (b) gives the profile with �30
crystallites or if perfectly packed 75 crystallites (3.5 mm � 0.25 mm
sample size), where not all the reflections are clearly resolved as in the
larger sample size. The data were collected with a 0.01� divergent Cu K�1

beam from a 1.8 kW X-ray laboratory source in 35 min. The samples were
stationary throughout, so the incident beam only explored one
orientation from each crystal. The peaks are narrow and occur at the
correct Bragg angles, and correspond to the interpretation where each
crystal contributes intensity as in Fig. 1.



where 	 is the phase difference of the scattered waves from

adjacent atoms. The amplitude at the centre of this row is

given by multiplying this through by exp(M	/2), giving rise to

terms that can be paired as [exp(�m	 + exp(+m	)], which is

simply 2cos(m	). The phase difference is given by 	 = 2�/�
(path difference). If the planar incident wave makes an angle

� to this row of atoms and the amplitude is monitored at an

angle of 2� to this incident-wave direction, then the path

difference between neighbours x distance apart is x[cos(2� �
�) � cos�] (Fewster, 2014). The amplitude A from a single

plane is the integral sum of these individual amplitudes over

the length of the plane Mx (= Lx), and is given by

A ¼

Zm¼M=2

m¼0

2a cosðm	Þ dm

¼ 2a
sin m	

	

� �m¼þM=2

m¼0

¼ 2a
sinðM	2 Þ

	

� �

¼
2Ma

2

sinðM	2 Þ

ðM	2 Þ
¼ Ma

sinðLx	
0

2 Þ

ð
Lx	
0

2 Þ
ð10Þ

where 	0 = 	/x = [cos(2� � �) � cos�]. The amplitudes a do

not necessarily have to be just from an atom, but can be from a

group of atoms, e.g. a molecule or unit cell, but they must have

the same amplitude and be at a regular repeat distance. The

amplitude sum of numerous parallel rows will form the

resultant for a plane.

Since there are many planes, N, that are equally spaced with

each experiencing an amplitude A [equation (10)], their

combined amplitude AN = A + Aexp(i�) + Aexp(i2�) +

Aexp(i3�) + . . . + Aexp[i(N�1)�], where � is the phase

change from plane to plane. This amplitude AN can be

represented as a geometric series which is given by

AN ¼ A
Xm¼N�1

m¼0

expðim�Þ ¼ A
expðiN�Þ � 1

expði�Þ � 1

� �

¼ A
expðiN�=2Þ

expði�=2Þ

expðiN�=2Þ � expð�iN�=2Þ

expði�=2Þ � expð�i�=2Þ

� �

¼ A
sinðN�

2 Þ

sinð�2 Þ
exp½iðN � 1Þ�=2� ¼ Ma

sinðLx	
0

2 Þ

ð
Lx	
0

2 Þ

sinðN�
2 Þ

sinð�2 Þ
:

ð11Þ

The multiplicative exponent term simply moves the refer-

ence phase point from the top layer to the middle of the stack

of N crystal planes for all the scattered waves. This distance

compared with that to the detector is negligible in this plane-

wave assumption, and therefore does not change the ampli-

tude. The phase difference between the scattering from
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Figure 19
The 004 diffraction space map expanded normal to the crystal truncation
rod to emphasize the wavy streak of the 80 Å In0.15Ga0.85As quantum
well, buried in a complex AlGaAs/GaAs structure. The other dominant
feature is the streak along 2�B. When the data were projected along 2�B,
the resultant profile fitted precisely with the simulation based on
dynamical theory. Collecting data with a high-resolution diffractometer
without an analyser (a rocking curve) gave small fringe displacements
with a broadened base to the substrate peak (a commonly observed
feature), whereas a single scan along the crystal truncation rod gave
regions of missing intensity.

Figure 18
(a) A diffraction space map close to the 004 reflection from an InGaAs
structure grown epitaxially onto a GaAs substrate. The data were
collected with the beam selection diffractometer (Fewster, 2004), with a
single reflection 004 analyser crystal (stepping in � followed by a scan
with movements in � and 2� maintaining a 1:2 ratio). The strong fringing
is associated with the layer structure (the shape transform) and occurs
along the crystal surface normal. The streak where 2� = 2� corresponds
to the incident-beam divergence and the streak along 2� for a constant �
value corresponds to the detector acceptance range (in this case the
diffraction profile of the analyser crystal). The remaining streak at
constant 2�B for varying � values is the ‘enhancement’ peak for the
substrate (as in Fig. 4b).

Figure 20
The relationship between the crystal plane, the tilt axis and the detector
slit.



parallel crystal planes is zero when the path length between

pairs of scatterers across adjacent planes is �, which occurs

when 2� = 2�Bn regardless of the incident angle � (Fewster,

2016). Therefore the maximum intensity occurs when the

phase difference � = (2�/�)(2dsin �) � n(2�) is zero where d

is the interplanar spacing and n is an integer, which corre-

sponds to the number of wavelengths in the path difference;

for example with n = 2, 3 etc., there will be additional

enhancement peaks. The overall amplitude is the same as

equation (5) in Fewster (2014). This amplitude term repre-

sents a significant contribution to the intensity, but should

include contributions from inclined planes to the data collec-

tion point; equation (3) and derivation of the term(3) are

given in Fewster (2014).

Equation (11) has two terms, giving rise to two peaks, i.e.

when 	0 = 0 and when � = 0 which refer to the atomic plane

specular peak and the enhancement peak, respectively.

In general crystals are not perfect, and this modifies the

above formulae.

B2. The intensity from an imperfect sample

As discussed by Fewster (2016) the peak intensity at 2�Bn is

weaker in imperfect crystals because the specular contribution

is broad and therefore only a small proportion can overlap the

enhancement peak for a specific wavelength and d spacing.

The maximum intensity of the broadened specular peak from

a slightly imperfect crystal is less than the enhancement peak.

This smaller overlap leads to a weakening of the enhancement

peak, because fewer contributions are in-phase and the

intensity is increased elsewhere. Consider the effect of an

imperfect crystal by applying the same approach as above. We

would expect a bent crystal plane to experience different

incident angles across it as well as a spread in the separation

between the planes.

The amplitude from a series of m regions that have roughly

flat crystal planes containing Mm scattering centres is given by

A�0
¼ ðaþ a expð�i	1Þ þ a expð�i2	1Þ þ a expð�i3	1Þ þ . . .

þ a expð�iM1	1ÞÞ

þ ðaþ a expð�i	2Þ þ a expð�i2	2Þ þ a expð�i3	2Þ þ . . .

þ a expð�iM2	2ÞÞ exp½�iðM1 þ 1Þ	1�

þ ðaþ a expð�i	3Þ þ a expð�i2	3Þ þ a expð�i3	3Þ þ . . .

þ a expð�iM3	3ÞÞ exp½�iðM1 þ 1Þ	1 þ ðM2 þ 1Þ	2� þ . . .

þ ðaþ a expð�i	mÞ þ a expð�i2	mÞ þ a expð�i3	mÞ þ . . .

þ a expð�iMm	mÞÞ exp �i
Pp¼m�1

p¼1

ðMp þ 1Þ	p

" #
: ð12Þ

Each region compares with equation (9) and the exponential

terms outside the brackets bring the phases into registry; in

this case they are relative to the middle of the first region.

Each region can then be simplified as in equations (9) to (10)

and combined with the influence of the number of planes,

equation (11), which is included for each region:

A�02� ¼ A0

	
lx1

Lx

sinðM1	1

2 Þ

ð
M1	1

2 Þ
expð�iM1	1=2ÞA2�1

þ
lx2

Lx

sinðM2	2

2 Þ

ð
M2	2

2 Þ
expð�iM2	2=2Þ exp½�iðM1 þ 1Þ	1�A2�2

þ
lx3

Lx

sinðM3	3

2 Þ

ð
M3	3

2 Þ
expð�iM3	3=2Þ

� exp½�iðM1 þ 1Þ	1 þ ðM2 þ 1Þ	2�A2�3
þ . . .



ð13Þ

where

Mj	j ¼
2�

�
Ixj½cosð2� ��jÞ � cos �j� ð14Þ

A2�j
¼

sinfNj½
�dj

� ð2 sin �Þ � n��g

sin½
�dj

� ð2 sin �Þ � n��
: ð15Þ

The amplitude incident on each region is in proportion to the

size of the region lx with respect to the whole length Lx . The

phase difference 	j between individual scattering centres in

region j is (2�/�){x[cos(2� � �j) � cos�j]}, where �j is the

local incident angle. The exp(M	/2) term places the reference

phase to the start of the region. Equation (13) is identical to

equation (11) if the crystal is flat, since �j and dj would be the

same for all regions. To include large numbers of defects, or to

probe large regions, the phase can be averaged by making M

random. The same methodology is used for the inclined

planes.

If we assume that the crystal is not strained and the number

of planes in each region is the same, then the calculation is

simplified [equation (15) is the same for all regions]. It is clear

with this approach that the level of complexity can be

extended (including crystal shape as well as distortions, the

influence of defects that define the relationship between �
and d etc.) to the point where the whole pattern is a summa-

tion of all the point scatterers, but the latter is impractical to

compute even for small crystals. Our main concern here is to

estimate the intensity, i.e. what is measured close to a

diffraction peak and what fraction of the total scattering

power this represents.

Equation (13) can therefore mimic the broad specular peak

and the sharp enhancement peak observed in Fig. 5.

B3. The calculation of the profiles in Figs. 6 and 7

The amplitude specularly reflected from N planes separated

by d is given in equation (15); however, in this case we drop

the n�, because we are not trying to isolate an individual peak:

A2�j
¼

sinfN½�d
� ð2 sin �Þ�g

sin½�d
� ð2 sin �Þ�

: ð16Þ

Whenever 2dsin �/� is integer then this term is at a maximum.

Calculating the intensity (A2�)
2 over the range 0 < � < �/2 will

produce a series of peaks as in Fig. 6(a), depending on the

value of d.

Inserting more sets of N planes interlaced with the original

set will require the phase reference point to be made coin-
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cident with the original; if this is related to the first plane then

this will be given by

A2� ¼ a0

sinfN½�d
� ð2 sin �Þ�g

sin½�d
� ð2 sin �Þ�

þ
X

j

aj

sinfN½�d
� ð2 sin �Þ�g

sin½�d
� ð2 sin �Þ�

� expði4�zjd sin �=�Þ: ð17Þ

The parameter a is the relative magnitude of the amplitude for

the planes with respect to a0 . This will reproduce the profiles

in Figs. 6(b), 7(a) and 7(b).

This approach makes it possible to expand the modelling to

strain by splitting the numbers of planes into smaller regions

with common d values and relating the phase reference point

of succeeding numbers of planes to that of the end of

the previous set of planes. The phase term would be

exp(i4�dj�1Nj�1sin �/�). This was the formula used for deter-

mining the influence of strain on the proportion of the struc-

ture factor measured with respect to that from the whole

range.
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Öztürk, H., Yan, H., Hill, J. P. & Noyan, I. C. (2015). J. Appl. Cryst. 48,

1212–1227.
Penning, P. & Polder, D. (1961). Philips Res. Rep. 16, 419–440.
Renninger, M. (1937). Z. Phys. 106, 141–176.
Scherrer, P. (1918). Gött. Nachr. 2, 98.
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