Long range versus short range spin correlations in A_{0.8}La_{1.2}MnO_{4.1} (A = Sr, Ba)

<u>Mirela Dragomir^{1,2}</u>, Christopher Wiebe³, Iztok Arčon^{4,5}, Chad Boyer⁶ Hanna Dabkowska^{1,2}, and John E. Greedan^{1,2}

¹ Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada ² Brockhouse Institute for Materials Research, Hamilton, ON, Canada

³ Department of Chemistry, University of Winnipeg, Winnipeg, MB, Canada

⁴ Laboratory of Quantum Optics, University of Nova Gorica, Nova Gorica, Slovenia

⁵ Department of Low and Intermediate Energy Physics, Jozef Stefan Institute, Ljubljana, Slovenia

⁶ Canadian Institute for Neutron Scattering, Chalk River, ON, Canada

Interesting magnetic phenomena can arise in compounds with the K₂NiF₄-type structure containing paramagnetic ions such as Mn^{3+} (1,2). In such materials, frustration results due to the interlayer magnetic coupling in the Mn^{3+} sublattice which consists of square planar layers stacked in an *I*-centred sequence. Here the strikingly distinct magnetic properties of two such isostructural compounds, Sr_{0.8}La_{1.2}MnO_{4.1} and Ba_{0.8}La_{1.2}MnO_{4.1} are discussed. Neither of these compounds have been reported so far, with only oxygen deficient and oxygen excess forms of Sr_{0.8}La_{1.2}MnO₄ being studied before (3,4). Both Sr_{0.8}La_{1.2}MnO_{4.1} and Ba_{0.8}La_{1.2}MnO_{4.1} have been recently synthesised in our laboratory, the latter as a single crystal, and their magnetic properties have been investigated and compared. Ba_{0.8}La_{1.2}MnO_{4.1} is a rare example of an anisotropic spin glass, showing spin freezing for the field direction parallel to the *c*-axis only, with no evident freezing with the field in the *ab* plane as indicated in the D.C. and A.C. magnetic susceptibility. The heat capacity data showed no evidence for long range magnetic order and a T¹ power law at low temperature, consistent with the spin glass behaviour in the magnetic susceptibility. Furthermore, the neutron diffraction data for Ba_{0.8}La_{1.2}MnO_{4.1} at 35 K (above $T_{\rm g}$) and 3.5 K (below $T_{\rm g}$) indicated the absence of magnetic Bragg peaks. On the other hand, La_{1.2}Sr_{0.8}MnO_{4.1} shows a broad maximum in the D.C. magnetic susceptibility data, characteristic of strong intra planar 2D antiferromagnetic spin correlations above $T_{\rm N} = 95$ K. The magnetic structure is the $k = (1/2 \ 1/2 \ 0)$ type typical for such materials with the Mn³⁺ moment along the c-axis. Neutron diffraction on Sr_{0.8}La_{1.2}MnO_{4.1} performed at temperatures above 95 K confirmed the Warren type line shape indicative of strong 2D spin correlations. Additionally, Mn K-edge XANES analysis revealed that Mn is in the +3 oxidation state in both compounds. The observed differences in properties are explained based on structural arguments.

- (1) Kawano, S. et al. J. Phys. (Paris) **49** (1988) C8-829; Bieringer, M. et al, J. Mater. Chem.**12** (2002) 279.
- (2) Dragomir, M. et al. To be published.
- (3) Li R., K. and Greaves, C. J. Solid State Chem. 153 (2000) 34.
- (4) Bahout, T. et al. Chem. Mater. 25 (2013) 4035.