The spin ice state in rare earth pyrochlores has been an object of study for decades due to the Pauling residual entropy observed at low temperatures. The mixture of two-in, two-out spins provides a way to observe a phenomenon known as moment fragmentation - the excitations act like magnetic monopoles.[1] There is another way to observe moment fragmentation by investigating pyrochlores that have dipole-octopolar crystal field states such as those containing Nd3+. Unfortunately, cubic pyrochlores such as Nd2Ti2O7 do not exist because of the mismatch between the Nd3+ and Ti4+ sites. However, cubic mixed B-site pyrochlores, such as Nd2ScNbO7 (which has Sc3+ and Nb5+ instead of Ti4+), can be prepared and large single crystals can be grown via the floating zone image furnace method.[2] Our group has recently been successful in the synthesis of a series of A2ScNbO7 pyrochlores (A = Pr, Nd, Sm –Dy) under ambient pressure. In this presentation, the idea of moment fragmentation will be introduced, and how can be studied in Nd2ScNbO7.[3]

Figure. Slip flip polarized neutron scattering data on Nd2ScNbO7 at T = 60 mK (from the DNS). The coexistence of diffuse spin ice scattering and magnetic Bragg peaks points towards magnetic fragmentation at low temperatures.

References
