Crystal structure of methylenetetrahydrofolate reductase (MTHFR) from *Sphingobium* sp. SYK-6

Author
Hongyang Yu 1,2, Naoyuki Kuwabara 1, Toshiya Senda 1,2

1 Structure Biology Research Center, Photon Factory, KEK, 2 The Grad. Univ. for Advanced Studies, School of High Energy Accelerator Science

*N*-methyltetrahydrofolate (5-CH3-THF) is the most important folate derivative in one-carbon metabolism, which is involved in nucleic acid and amino acid synthesis. 5-CH3-THF can be transported into cells through a folate receptor and functions as a methyl donor for methionine metabolism, which synthesizes AdoMet serving as a major methyl donor for DNA/histone methylation. In most organisms, 5-CH3-THF is generated from *N*5-*N*10-methylenetetrahydrofolate (5,10-CH2-THF) reversibly by methylenetetrahydrofolate reductase (MTHFR). However, in the gram-negative bacterium *Sphingobium* sp. SYK-6, which grows on lignin-derived aromatic compounds as a sole carbon energy source, MTHFR (S6MTHFR) catalyzes a conversion of 5-CH3-THF to 5,10-CH2-THF irreversibly. We speculated that the difference of catalytic-reaction characters between MTHFR and S6MTHFR arise from their structural differences. To investigate the molecular mechanism of the irreversible reaction of S6MTHFR, we initiated a crystallographic study of S6MTHFR. S6MTHFR was overexpressed in *E. coli* BL21, and purified by anion exchange and size exclusion chromatography. From 4L culture of *E. coli*, 25 mg of S6THFR could be obtained. We have succeeded in crystallization of S6MTHFR and collected diffraction data for native SAD phasing at BL-1A of Photon Factory (Tsukuba, Japan). Details of the S6MTHFR structure will be described in the poster presentation.