Molecular Engineering of Crystalline Nano-optomechanical Transducers

Jacqueline M. Cole1,2,3,4,*

\textit{1 Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK.}

\textit{2 ISIS Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK.}

\textit{3 Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.}

\textit{4 Argonne National Laboratory, 9700 S Cass Avenue, Argonne, IL 60439, USA.}

* Email for correspondence: jmc61@cam.ac.uk

\textbf{Abstract}

Crystalline materials that behave as optical actuators and proceed via some form of nano-optomechanical mechanism are of particular interest for optical data storage[1] or quantum computing[2]. Nonetheless, the field is facing a dearth of suitable functional materials for applications. One possible material option is a series of compounds based on the generic formula, $[\text{Ru(SO}_2\text{)}(\text{NH}_3)_4\text{X}]\text{Y}$, whose SO$_2$ group manifests solid-state linkage photo-isomerization (X is the trans-ligand to SO$_2$; Y is a counterion). This light-induced phenomenon causes these materials to act as photo-induced molecular switches [3-5] or molecular transducers [6,7] whose nano-optomechanical properties exist in the single-crystal state: a high-quality solid-state medium for single-photon control.

This talk will present the development of this family of materials towards such applications, via a range of advanced in situ 'photo-crystallography' and in-situ imaging experiments that capture the phenomenon in their light-induced state [8-10]. Results are enabling our understanding of the light-induced molecular structure and nano-optomechanical properties of these light-induced solid-state actuators. Establishing this knowledge-base of structure-to-function relationships leads to the ultimate goal of being able to molecularly engineer these materials for a given device application.

\textbf{References}

