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This work considers the scaling properties characterizing the hyperuniformity

(or anti-hyperuniformity) of long-wavelength fluctuations in a broad class of

one-dimensional substitution tilings. A simple argument is presented which

predicts the exponent � governing the scaling of Fourier intensities at small

wavenumbers, tilings with � > 0 being hyperuniform, and numerical

computations confirm that the predictions are accurate for quasiperiodic tilings,

tilings with singular continuous spectra and limit-periodic tilings. Quasiperiodic

or singular continuous cases can be constructed with � arbitrarily close to any

given value between �1 and 3. Limit-periodic tilings can be constructed with �
between �1 and 1 or with Fourier intensities that approach zero faster than any

power law.

1. Introduction

Recent work has shown that spatial structures with density

fluctuations weaker at long wavelengths than those of a typical

random point set may have desirable physical properties, and

such structures are said to be hyperuniform (Torquato &

Stillinger, 2003). Crystals and quasicrystals are hyperuniform,

as are a variety of disordered systems, including certain

equilibrium structures, products of nonequilibrium self-

assembly protocols and fabricated metamaterials. [For exam-

ples, see Man et al. (2013), Haberko & Scheffold (2013),

Dreyfus et al. (2015), Torquato et al. (2015), Hexner & Levine

(2015), Castro-Lopez et al. (2017), Torquato (2018).] One

approach to generating point sets with nontrivial spatial fluc-

tuations is to use substitution tilings as templates. Our aim in

this article is to characterize the degree of hyperuniformity in

such systems and thereby provide design principles for

creating hyperuniform (or anti-hyperuniform) point sets with

desired scaling properties.

Substitution tilings are self-similar, space-filling tilings

generated by repeated application of a rule that replaces each

of a finite set of tile types with scaled copies of some or all of

the tiles in the set (Frank, 2008). We are interested in the

properties of point sets formed by decorating each tile of the

same type in the same way. We consider here only one-

dimensional (1D) tilings. Although generalization to higher

dimensions would be of great interest, the 1D case already

reveals important conceptual features.
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Substitution rules are known to produce a variety of

structures with qualitatively different types of structure factors

SðkÞ. Some rules generate periodic or quasiperiodic tilings, in

which case SðkÞ consists of Bragg peaks on a reciprocal-space

lattice supported at sums and differences of a (small) set of

basis wavevectors, which in the quasiperiodic case form a

dense set. Others produce limit-periodic structures consisting

of Bragg peaks located on a different type of dense set

consisting of wavenumbers of the form �k0n=pm, where n, m

and p are positive integers (Godrèche, 1989; Baake & Grimm,

2011, 2013). Still others produce structures for which SðkÞ is

singular at a dense set of points but does not consist of Bragg

peaks (Bombieri & Taylor, 1986; Godrèche & Luck, 1992;

Baake et al., 2017). (A singular continuous spectrum has

support on some set of zero Lebesgue measure, but has no

finite weight at any single point.) We note in particular that a

detailed analysis of the spectrum of substitution tilings with

non-PV properties (defined below) reveals multifractal scaling

laws (Godrèche & Luck, 1992). Finally, there are cases for

which SðkÞ is absolutely continuous (Baake & Grimm,

2012) or the nature of the spectrum has not been clearly

described.

In this article, we present a simple ansatz that predicts the

scaling properties relevant for assessing the hyperuniformity

(or anti-hyperuniformity) of 1D substitution tilings. We illus-

trate the validity of the ansatz via numerical computations for

a variety of example tilings that fall in different classes with

respect to hyperuniformity measures. We also delineate the

full range of behaviors that can be obtained using the substi-

tution construction method, including a novel class in which

the integrated Fourier intensity ZðkÞ decays faster than any

power as k approaches zero.

Section 2 reviews the definition of the scaling exponent �
associated with both ZðkÞ and the variance �2ðRÞ in the

number of points covered by a randomly placed interval of

length 2R. We then review the classification of tilings based on

the value of �. Section 3 reviews the substitution method for

creating tilings, using the well known Fibonacci tiling as an

illustrative example. The substitution matrix M is defined and

straightforward results for tile densities are derived. Section 4

presents a heuristic discussion of the link between density

fluctuations in the tilings and the behaviors of SðkÞ and ZðkÞ,

which leads to a prediction for �. The prediction is shown to be

accurate for example tilings of three qualitatively distinct

types (Torquato, 2018): strongly hyperuniform (class I),

weakly hyperuniform (class III) and anti-hyperuniform.

Section 5 shows, based on the heuristic theory, that the range

of possible values of � produced by 1D substitution rules is

½�1; 3� and that this interval is densely filled. Section 6

considers substitutions that produce limit-periodic tilings.

Examples are presented of four distinct classes: logarithmic

hyperuniform (class II), weakly hyperuniform (class III), anti-

hyperuniform, and an anomalous class in which ZðkÞ

approaches zero faster than any power law. Finally, Section 7

provides a summary of the key results, including a table

showing which types of tilings can exhibit the various classes

of (anti-)hyperuniformity.

2. Classes of hyperuniformity

For systems having a structure factor SðkÞ that is a smooth

function of the wavenumber k, SðkÞ tends to zero as k tends to

zero (Torquato & Stillinger, 2003), typically scaling as a power

law:

SðkÞ � k�: ð1Þ

In 1D, a unified treatment of standard cases with smooth SðkÞ

and quasicrystals with dense but discontinuous SðkÞ is

obtained by defining � in terms of the scaling of the integrated

Fourier intensity:

ZðkÞ ¼ 2
Rk
0

SðqÞ dq: ð2Þ

The factor of 2 is inserted for consistency with higher-

dimensional generalizations where q is treated as a radial

coordinate. In both cases, � may be defined by the relation

(Oğuz et al., 2017)

ZðkÞ � k1þ� as k! 0: ð3Þ

Systems with �> 0 have long-wavelength spatial fluctuations

that are suppressed compared with Poisson point sets and are

said to be hyperuniform (Torquato & Stillinger, 2003).

Prototypical strongly hyperuniform systems (with �> 1)

include crystals and quasicrystals. We refer to systems with

�< 0 as anti-hyperuniform (Torquato, 2018). Prototypical

examples of anti-hyperuniformity include systems at thermal

critical points.

An alternate measure of hyperuniformity is based on the

local number variance of particles within a spherical obser-

vation window of radius R (an interval of length 2R in the 1D

case), denoted by �2ðRÞ. If �2ðRÞ grows more slowly than the

window volume (proportional to R in 1D) in the large-R limit,

the system is hyperuniform. The scaling behavior of �2ðRÞ is

closely related to the behavior of ZðkÞ for small k (Torquato &

Stillinger, 2003; Oğuz et al., 2017). For a general point

configuration in 1D with a well-defined average number

density �, �2ðRÞ can be expressed in terms of SðkÞ and the

Fourier transform ~��ðk; RÞ of a uniform density interval of

length 2R:

�2
ðRÞ ¼ 2R�

1

2�

Z1
�1

SðkÞ ~��ðk; RÞ dk

2
4

3
5 ð4Þ

with

~��ðk; RÞ ¼ 2
sin2
ðkRÞ

k2R
; ð5Þ

where � is the density. [See Torquato & Stillinger (2003) for

the generalization to higher Euclidean space dimensions.] One

can express the number variance alternatively in terms of the

integrated intensity (Oğuz et al., 2017):

�2
ðRÞ ¼ �2R�

1

2�

Z1
0

ZðkÞ
@ ~��ðk; RÞ

@k
dk

2
4

3
5: ð6Þ
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For any 1D system with a smooth or quasicrystalline

structure factor, the scaling of �2ðRÞ for large R is determined

by � as follows (Torquato & Stillinger, 2003; Zachary &

Torquato, 2009; Torquato, 2018):

�2
ðRÞ �

R0; �> 1 ðclass IÞ

ln R; � ¼ 1 ðclass IIÞ

R1��; �< 1 ðclass IIIÞ

8<
: : ð7Þ

For hyperuniform systems, we have �> 0, and the distinct

behaviors of �2ðRÞ define the three classes, which we refer to

as strongly hyperuniform (class I), logarithmic hyperuniform

(class II) and weakly hyperuniform (class III). As mentioned

above, systems with �< 0 are classified as anti-hyperuniform.

The bounded number fluctuations of class I occur trivially

for 1D periodic point sets (crystals) and are also known to

occur for certain quasicrystals, including the canonical Fibo-

nacci tiling described below (Oğuz et al., 2017). Other quasi-

periodic point sets (not obtainable by substitution) are known

to belong to class II (Kesten, 1966; Aubry et al., 1987; Oğuz et

al., 2017).

3. Substitution tilings and the substitution matrix

A classic example of a substitution tiling is the 1D Fibonacci

tiling composed of two intervals (tiles) of length L and S. The

tiling is generated by the rule

L! LS; S! L; ð8Þ

which leads to a quasiperiodic sequence of L and S intervals.

An important construct for characterizing the properties of

the tiling is the substitution matrix:

M ¼
0 1

1 1

� �
; ð9Þ

which acts on the column vector ðNS;NLÞ to give the numbers

of S and L tiles resulting from the substitution operation.

If the lengths L and S are chosen such that the ratio L=S

remains fixed, which in the present case requires

L=S ¼ ð1þ 51=2Þ=2 � �, the substitution operation can be

viewed as an affine stretching of the original tiling by a factor

of � followed by the division of each stretched L tile into an LS

pair, as illustrated in Fig. 1. Given a finite sequence with NS

tiles of length S and NL tiles of length L, the numbers of L’s

and S’s in the system after one iteration of the substitution rule

are given by the action of the substitution matrix on the

column vector ðNS;NLÞ.

More generally, substitution rules can be defined for

systems with more than two tile types, leading to substitution

matrices with dimension D greater than 2. We present explicit

reasoning here only for the D = 2 case. A substitution rule for

two tile types is characterized by a substitution matrix:

M ¼
a b

c d

� �
: ð10Þ

The associated rule may be the following:

S! SS . . . S|fflfflffl{zfflfflffl}
a

LL . . . L|fflfflfflfflffl{zfflfflfflfflffl}
c

; L! SS . . . S|fflfflffl{zfflfflffl}
b

LL . . . L|fflfflfflfflffl{zfflfflfflfflffl}
d

; ð11Þ

but different orderings of the tiles in the substituted strings are

possible, and the choice can have dramatic effects. Note, for

example, that the rule

S! SL; L! SLSL ð12Þ

produces the periodic tiling . . . SLSLSL . . ., while the rule

S! SL; L! SLLS ð13Þ

produces the more complicated sequence discussed below in

Section 6.

Defining the substitution tiling requires assigning finite

lengths to S and L. We let � denote the length ratio L=S, and

we consider only cases where the substitution rule preserves

this ratio [i.e. ðbSþ dLÞ=ðaSþ cLÞ ¼ L=S] so that the rule can

be realized by affine stretching followed by subdivision. This

requires

� ¼
d� aþ ½ða� dÞ

2
þ 4bc�1=2

2c
: ð14Þ

For all discussions and plots below, we measure lengths in

units of the short tile length, S.

The SL sequence generated by a substitution rule is

obtained by repeated application of that operation to some

seed, which we will take to be a string containing nS short

intervals and nL long ones. We are interested in point sets

formed by decorating each L tile with ‘ points and each S tile

with s points. The total number of points at the mth iteration is

N m ¼ ðs; ‘Þ �M
m
� ðnS; nLÞ; ð15Þ

and the length of the tiling at the same step is

Xm ¼ ð1; �Þ �M
m
� ðnS; nLÞ: ð16Þ

Let 	1 and 	2 be the eigenvalues of M, with 	1 being the

largest, and let v1 and v2 be the associated eigenvectors. We

have

	1 ¼ aþ c�; 	2 ¼ d� c�; ð17Þ

v1 ¼ ðb=c; �Þ; v2 ¼ ð��; 1Þ: ð18Þ

The unit vectors ð1; 0Þ and ð0; 1Þ may be expressed as follows:

ð1; 0Þ ¼ uðcv1 � c�v2Þ; ð19Þ

ð0; 1Þ ¼ uðc�v1 þ bv2Þ; ð20Þ

where u ¼ 1=ðbþ c�2Þ. We then have
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Acta Cryst. (2019). A75, 3–13 Erdal C. Oğuz et al. � (Anti)-hyperuniformity in substitution tilings 5

Figure 1
The Fibonacci substitution rule. The tiling on the upper line is uniformly
stretched, then additional points are added to form tiles congruent to the
originals.



Mm � ðnS; nLÞ ¼ Mm � nSð1; 0Þ þ nLð0; 1Þ
� �

¼ u

�
	m

1 ðcnS þ c�nLÞv1

þ 	m
2 ð�c�nS þ bnLÞv2

�
: ð21Þ

The density of tile vertices after m iterations, �m ¼ N m=Xm, is

thus

�m ¼ �þ
�ðs� � ‘Þ

bþ c�2

� �
c�nS � bnL

nS þ �nL

� �
	2

	1

� �m

; ð22Þ

with � ¼ ðbsþ c‘�Þ=ðbþ c�2Þ, where we have used the fact

that ð1; �Þ � v2 ¼ 0.

4. Scaling properties of 1D substitution tilings

As long as the coefficient of ð	2=	1Þ
m in equation (22) does not

vanish, the deviations of � from � for portions of the tiling that

are mapped into each other by substitution are related by


�mþ1 ¼
	2

	1


�m: ð23Þ

If the coefficient does vanish, which requires that � be rational,

the tiling may be periodic, but the ordering of the intervals in

the seed becomes important. We will revisit this point below.

For now we assume that the tiling is not periodic.

We make three conjectures regarding nonperiodic substi-

tution tilings, supported, as we shall see, by numerical

experiments. The results are closely related to recently derived

rigorous results (Baake, Gaehler et al., 2018).

Conjecture 1. We take equation (23) to be the dominant

behavior of density fluctuations throughout the system, not

just for the special intervals that are directly related by

substitution. That is, we assume that there exists a character-

istic amplitude of the density fluctuations at a given length

scale after averaging over all intervals of that length, and that

the 
� in equation (23) can be interpreted as that character-

istic amplitude.

Conjecture 2. For the present purposes, we define the real-

space density gðxÞ ¼
P

n 
ðx� xnÞ to consist of unit-strength


-functions placed at every point xn where two tiles meet, and

consider the Fourier amplitudes

AðkÞ ¼ lim
h!1

1

2h

Zh

�h

gðxÞ expðikxÞ dx

						
						: ð24Þ

With this definition, the average density over a large domain is

equal to the number density of tiles, �, in that domain. We

assume that AðkÞ scales the same way as the density fluctua-

tions at the corresponding length scale:

Aðk=	1Þ ¼
	2

	1

AðkÞ: ð25Þ

This implies the form

AðkÞ � kð� ln j	2=	1j= ln j	1jÞ ¼ k1�ðln j	2j= ln j	1jÞ: ð26Þ

Squaring to get SðkÞ, we have

SðkÞ � kð2�2 ln j	2j= ln j	1jÞ: ð27Þ

This conjecture may not hold when interference effects are

important, as in the case discussed in Section 6 below.

Conjecture 3. While ZðkÞ is an integral of SðkÞ, the exponent

must be calculated carefully when SðkÞ consists of singular

peaks. In the Fibonacci projection cases, the scaling of peak

positions and intensities conspires to make ZðkÞ scale with the

same exponent as the envelope of SðkÞ (Oğuz et al., 2017). We

assume that this property carries over to substitution tilings

with more than one eigenvalue greater than unity. Though the

diffraction pattern is not made up of Bragg peaks (Bombieri &

Taylor, 1986; Godreche & Luck, 1990), we conjecture that it

remains sufficiently singular for the relation to hold. Thus we

immediately obtain

� ¼ 1� 2
ln j	2j

ln 	1

� �
: ð28Þ

Note that this calculation of the scaling exponent makes no

reference to the distinction between substitutions with j	2j< 1

and those with j	2j> 1. In the former case, 	1 is a Pisot–

Vijayaraghavan (PV) number, SðkÞ consists of Bragg peaks

and �2ðRÞ remains bounded for all R. In the latter case, the

form of SðkÞ is more complex (Bombieri & Taylor, 1986), and

quantities closely related to �2ðRÞ, including the ‘wandering

exponent’ associated with lifts of the sequence onto a higher-

dimensional hypercubic lattice, are known to show nontrivial

scaling exponents (Godreche & Luck, 1990).

From equation (28), we see that the hyperuniformity

condition �> 0 requires j	2j< ð	1Þ
1=2. Though the result was

obtained for substitutions with only D = 2 tile types, it holds

for D> 2 as well, so long as all ratios of tile lengths are

preserved by the substitution rules; i.e. the dominant contri-

bution to the long-wavelength fluctuations still scales like

j	2j=	1. This distinction between hyperuniform and anti-

hyperuniform substitution tilings thus divides the non-PV

numbers into two classes which, to our knowledge, have not

previously been identified as significantly different. We note,

for example, that the analysis presented in Baake, Grimm et al.

(2018), which treats substitution matrices of the form

ð0; n; 1; 1Þ and shows that they have singular continuous

spectra (having no Bragg component or absolutely continuous

component) for n> 2, does not detect any qualitative differ-

ence between the cases n ¼ 3 and n ¼ 5. The former case is

hyperuniform, with 	 ¼ ð1=2Þ½1� ð13Þ1=2
� and � ’ 0:37, while

the latter is anti-hyperuniform, with 	 ¼ ð1=2Þ½1� ð21Þ1=2
� and

� ’ �0:14.

For the Fibonacci case, we have 	1 ¼ � and 	2 ¼ �1=�,

yielding � ¼ 3, which agrees with the explicit calculation in

Oğuz et al. (2017). Considering ða; b; c; dÞ of the form

ð0; n; n; nÞ for arbitrary n, we find cases that allow explicit

checks of our predictions for � for both hyperuniform and

anti-hyperuniform systems. We have 	1 ¼ n� and 	2 ¼ �n=�,

yielding

� ¼ 1� 2
ln n� ln �

ln nþ ln �

� �
: ð29Þ
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For n 	 2, the presence of more than one eigenvalue with

magnitude greater than unity gives rise to more complex

spectral features, possibly including a singular continuous

component. For 2 
 n 
 4, our calculation predicts 0<�< 1

and hence �2ðRÞ � R1��. We numerically verify the latter

result for n ¼ 2 using a set of 954 369 points generated by 12

iterations of the substitution tiling, where the decoration

consists of placing one point at the rightmost edge of each

tile (with s ¼ ‘ ¼ 1). Fig. 2 shows the computed number

variance. For each point, a window of length 2R is moved

continuously along the sequence and averages are computed

by weighting the number of points in the window by the

interval length over which that number does not change. A

regression analysis yields �2ðRÞ � R0:36, in close agreement

with the predicted exponent from equation (27): 1� � ¼
2ðln 2� ln �Þ=ðln 2þ ln �Þ ’ 0.36094.

For n 	 5, the calculated value of � is negative, approaching

�1 as n approaches infinity. The point set is therefore anti-

hyperuniform; it contains density fluctuations at long wave-

lengths that are stronger than those of a Poisson point set. For

n ¼ 5, we have � ¼ �0:0793 . . .. Fig. 3 shows a log–log plot of

the computed number variance along with the line corre-

sponding to �2ðRÞ � R1��. Again, the agreement between the

numerical result and the predicted value is quite good.

Intuition derived from theories based on nonsingular forms of

SðkÞ suggests that a negative value of � should be associated

with a divergence in SðkÞ for small k, though it remains true

that ZðkÞ converges to zero for �> � 1. For singular spectra,

the envelope of SðkÞ scales like ZðkÞ, and we do not expect any

dramatic change in the behavior of SðkÞ as � crosses from

positive (hyperuniform) to negative (anti-hyperuniform). The

theories presented in Baake et al. (2017) and Godreche &

Luck (1990) may provide a path to the computation of scaling

properties of SðkÞ in these cases. It is worth noting, however,

that the various classes of behavior can be realized by

substitutions that produce limit-periodic tilings with SðkÞ

consisting entirely of Bragg peaks with no singular-continuous

component, as shown in Section 6 below.

For rules that yield rational values of the length ratio �, the

coefficient of ð	2=	1Þ
m in equation (22) can vanish for

appropriate choices of nS and nL, suggesting that there are no

fluctuations about the average density that scale with wave-

length. This reflects the fact that the sequence of intervals

associated with the substitutions can be chosen to generate a

periodic pattern. (A simple example is S! L and L! SLS,

which generates the periodic sequence . . . SLSLSL . . ., with

� ¼ 2, 	1 ¼ 2 and 	2 ¼ �1.) For such cases, SðkÞ is identically

0 for all k smaller than the reciprocal-lattice basis vector. For

other interval sequence choices corresponding to the same M,

the tiling can be limit-periodic, and we would expect the

scaling to be given by applying the above considerations with

generic choices of the ordering, which would yield � ¼ 1 and

therefore a logarithmic scaling of �2ðRÞ. This case is presented

in more detail in Section 6 below, and the logarithmic scaling is

confirmed.

5. Achievable values of a

Beyond establishing that substitution tilings exist for each

hyperuniformity class, it is natural to ask whether any desired

value of � can be realized by this construction method. Here

we show that if M is full rank, � always lies between �1 and 3.

First, note that the maximum value of j	2=	1j is 1, by defi-

nition, which sets the lower bound on � via equation (28). The

upper bound on � is obtained when j	2j is as small as possible,

but there is a limit on how small this can be. The product of the

eigenvalues of M is equal to det M, so j	2j cannot be smaller

than ðj det Mj=	1Þ
1=ðD�1Þ. But j det Mj is an integer, and the

smallest nonzero value it can take is 1. (The case 	2 ¼ 0 is

discussed in Section 6 below. For D 	 3, one can have

det M ¼ 0 with nonzero 	2. The analysis of such cases is

beyond our present scope.) Hence we have

j	2j 	 	
�1=ðD�1Þ
1 ; ð30Þ

implying
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Figure 2
Log–log plot of the number variance (black dots) for a non-PV
substitution tiling corresponding to ða; b; c; dÞ ¼ ð0; 2; 2; 2Þ decorated
with points of equal weight at each tile boundary. The variance was
computed numerically for the tiling created by 12 iterations of the
substitution on the initial seed SL. The red dashed line has the predicted
slope 1� � ’ 0:36.

Figure 3
Log–log plot of the number variance (black dots) for an anti-
hyperuniform substitution tiling corresponding to ða; b; c; dÞ =
ð0; 5; 5; 5Þ decorated with points of equal weight at each tile boundary.
The variance was computed numerically for the tiling created by six
iterations of the substitution on the initial seed SL. The red dashed line
has the predicted slope 1� � ’ 1:08.



� ¼ 1� 2
ln j	2j

ln 	1



Dþ 1

D� 1
: ð31Þ

Thus the maximum value of � obtainable by this construction

method is 3, which can occur for D = 2, as in the Fibonacci

case.

The family of substitutions considered in Section 4 above

produces a discrete set of values of � ranging from �1 to 3. By

considering two additional families, we can show that the

possible values of � densely fill this interval. For

M ¼
a 0

c d

� �
ð32Þ

with d> aþ 1 and 2c< ðd� aÞ, we have 	1 ¼ a and 	2 ¼ d.

Note that � ¼ ðd� aÞ=c is rational here; we assume that the

substitution sequences for the two tiles are chosen so as to

avoid periodicity. We have

� ¼ 1� 2
ln a

ln d
: ð33Þ

For fixed a, d can range from aþ 2 to 1. As d approaches

infinity, � approaches 1. For d ¼ aþ 2, as a approaches infi-

nity, � approaches �1. For sufficiently large d, the values of a

between 1 and d� 2 yield an arbitrarily dense set of �’s

between �1 and 1.

Another class of M’s produces �’s between 1 and 3. For

M ¼
0 b

b nb

� �
ð34Þ

with n> b, we have

� ¼
1

2
½nþ ðn2 þ 4Þ1=2

�; ð35Þ

	1;2 ¼
b

2
½n� ðn2 þ 4Þ1=2

�: ð36Þ

We thus obtain

� ¼ 1� 2
ln b� ln 2þ ln½ðn2 þ 4Þ1=2

� n�

ln b� ln 2þ ln½ðn2 þ 4Þ1=2
þ n�

: ð37Þ

For large n, we have

� ’ 1� 2
ln b� 2 ln 2� ln n

ln bþ ln n
; ð38Þ

which approaches 3 for b� n and approaches 1 for b ¼ n. By

making n as large as desired, the values of b between 1 and n

give �’s that fill the interval between 1 and 3 with arbitrarily

high density.

6. Limit-periodic tilings

For a limit-periodic tiling, the set of tiles is a union of periodic

patterns with ever-increasing lattice constants of the form apn,

where p is an integer and n runs over all positive definite

integers (Godrèche, 1989; Baake & Grimm, 2011, 2013;

Socolar & Taylor, 2011). We show here that there exist limit-

periodic tilings of four hyperuniformity classes: logarithmic

(class II), weakly hyperuniform (class III), anti-hyperuniform,

and an anomalous case in which ZðkÞ decays to zero faster

than any power law as k goes to zero. The latter corresponds to

a rule for which det M ¼ 0 (and 	2 ¼ 0), in which case � is

not well defined. The existence of anti-hyperuniform limit-

periodic tilings shows that anti-hyperuniformity does not

require exotic singularities in SðkÞ for small k. Generally, it

requires only that ZðkÞ grows sub-linearly with k.

6.1. The logarithmic case (a = 1)

The rule L! LSS, S! L with S ¼ 1 and L ¼ 2 yields the

well-known ‘period doubling’ limit-periodic tiling. The

eigenvalues of the substitution matrix are 	1 ¼ 2 and 	2 ¼ �1,

leading to the prediction � ¼ 1 and therefore quadratic

scaling of ZðkÞ and logarithmic scaling of �2ðrÞ. Numerical

results for �2ðRÞ are in good agreement with this prediction

(Torquato et al., 2018). In fact, one can show explicitly via

direct calculation of �2ðRÞ that the scaling is logarithmic. The

calculation outlined in Appendix A shows that

�2
ðRÞ ¼

1

3

X1
n¼0

w

2n

n o
1�

w

2n

n o
 �
; ð39Þ

where w ¼ 2R and fxg denotes the fractional part of x. From

this it follows that for R ¼ 2n�1=3 with n 	 1 we have

�2ðRÞ ¼
2

27

13

3
þ n

� �
; ð40Þ

demonstrating clear logarithmic growth for this special

sequence of R values. One can also derive an upper bound

over the interval 2n�1 <R 
 2n by assuming that the summand
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Figure 4
The � ¼ 1 (period doubling) limit-periodic tiling. Top: the tile boundaries
with each point plotted at a height corresponding to the value of n for the
sublattice to which it belongs. Bottom: plot of the number variance. The
horizontal dotted line marks �2 ¼ 2=9, which is obtained for every R of
the form 2n with integer n 	 �1. The dashed lines indicate upper bounds,
and the open circles are analytically calculated values for R ¼ 2n=3. See
text for details.



in equation (39) takes its maximum possible value on the

intervals ð0; 1=2�; ð1=2; 1�; ð2m�1; 2m�, for m 
 n, and maxi-

mizing the possible sum of the exponentially decaying

remaining contributions. The result is

�2
ðRÞ<

1

4
1þ

n

3


 �
for 2n�1 <R 
 2n: ð41Þ

This upper bound also grows logarithmically and is shown as a

series of dashed lines in Fig. 4.

It is instructive to carry out a more detailed analysis of SðkÞ

for this particularly simple case as well. [See also Torquato et

al. (2018).] The tiling generated by applying the substitution

rule repeatedly to a single L with its left edge at x ¼ 1 consists

of points located at positions 4‘ð2jþ 1Þ, where ‘ and j range

over all positive integers (including zero). The structure factor

therefore consists of peaks at kmn ¼ 2�m=ðapnÞ, with a ¼ 2

and p ¼ 4, for arbitrarily large n and all integer m. For m not a

multiple of 4n�1, the peak at kmn gets nonzero contributions

only from the lattices with ‘ 	 n. These can be summed as

follows:

SðkmnÞ ¼ lim
N!1

				X1
‘¼n

1

2� 4‘

� �

�
1

N

XN�1

j¼0

exp
2�im4‘ð2jþ 1Þ

2� 4n

� �				2 ð42Þ

¼
1

9� 42n

� �
4mod2ðmþ1Þ; ð43Þ

where the factor of 1=ð2� 4‘Þ in the first line is the density of

the sublattice with that lattice constant. Applying this

reasoning to each value of n gives a result that can be

compactly expressed as

Sðkm�Þ ¼
GCDð2�;mÞ

3� 4�

� �2

; ð44Þ

where � is an arbitrarily large integer, GCDðÞ is the greatest

common denominator function, and m can now take any

positive integer value. Fig. 5 shows plots of SðkÞ and ZðkÞ for

this tiling. [See also Torquato et al. (2018) for an explicit

expression for ZðkÞ and proof of the quadratic scaling.] Note

that the apparent repeating unit in the plot of ZðkÞ spans only

a factor of 2, even though the scaling factor for the lattice

constants is 4. A similar effect occurs in the Poisson and anti-

hyperuniform cases below. In the present case, the construc-

tion in Appendix A showing that the density can be expressed

using lattice constants 1=2n explains the origin of the effect.

6.2. A Poisson scaling example (a = 0) and weak hyper-
uniformity (0 < a < 1)

The substitution rule

S! LL; L! LLSSSS ð45Þ

with S ¼ 1 and L ¼ 2 produces a limit-periodic tiling with

a ¼ 2 and p ¼ 16. Equation (28) yields � ¼ 0, which is the

value corresponding to a Poisson system. Fig. 6 shows the

result of direct computations of ZðkÞ including all of the Bragg
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Figure 5
The � ¼ 1 limit-periodic tiling. Top: a logarithmic plot of the analytically
computed SðkÞ (arbitrarily scaled) including kmn with n 
 3. Bottom: a
log–log plot of ZðkÞ computed numerically from SðkÞ. The dashed red line
shows the expected quadratic scaling law.

Figure 6
Comparison of direct computation of ZðkÞ and �2ðRÞ with the predicted
scaling laws for a limit-periodic tiling with � ¼ 0. The dashed red lines
show the expected linear scaling laws. The inset shows the piecewise
parabolic behavior of �2ðRÞ over a small span of R values.



peaks at k ¼ 2�n=ðap3Þ and of �2ðRÞ. Values of �2 were

computed from a sequence of 21 889 points obtained by seven

iterations of the substitution rule on an initial L tile. For each

point, a window of length 2R is moved continuously along the

sequence for the computation of the averages.

Limit-periodic examples of weak hyperuniformity (class

III) are afforded by substitutions of the form

M ¼
0 2n

2 2ðn� 1Þ

� �
; ð46Þ

with n 	 3 with L=S ¼ n, which yields

� ¼
ln n� ln 2

ln nþ ln 2
ð47Þ

¼ f0:226294; 1=3; 0:39794; 0:442114; . . .g: ð48Þ

6.3. Anti-hyperuniformity (a < 0)

The substitution rule

S! LLL; L! LLLSSSSSS ð49Þ

with S ¼ 1 and L ¼ 2 produces a limit-periodic tiling with

a ¼ 2 and p ¼ 36. Equation (28) yields

� ¼ 1� 2
ln 3

ln 6
¼ �0:226294 . . . ; ð50Þ

which indicates anti-hyperuniform fluctuations. Fig. 7 shows

the result of a direct computation of ZðkÞ including all of the

Bragg peaks at k ¼ 2�n=ðap3Þ.

More generally, substitution matrices of the form

M ¼
0 2n

n n

� �
ð51Þ

with n 	 3 and L=S ¼ 2 yield limit-periodic anti-

hyperuniform tilings with

� ¼ 1� 2
ln n

ln 2n
¼

ln 2� ln n

ln 2þ ln n
ð52Þ

¼ f�0:226294;�1=3;�0:39794; . . .g: ð53Þ

6.4. A k2 = 0 case (a undefined)

A special class of tilings is derived from substitution

matrices of dimension D = 2 that have 	2 ¼ 0 (and hence

det M ¼ 0). Such rules can produce periodic tilings, limit-

periodic ones or more complex structures. The criteria for

limit-periodicity can be obtained by analyzing constant-length

substitution rules in which each L is considered to be made up

of two tiles of unit length: L ¼ AB. If the induced substitution

rule on S, A and B exhibits appropriate coincidences, the tiling
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Figure 7
Comparison of direct computation of ZðkÞ with the predicted scaling law
for a limit-periodic tiling with � ¼ �0:226294 . . .. The dashed red line
shows the expected scaling law with slope 1þ �.

Figure 8
Top: periodic sublattices of the limit-periodic point set generated by
equation (54). Each point is plotted at a height n corresponding to the
subset that contains it. Points of the same color form a periodic pattern
with period 3n. Second: deviation of jAðknÞj from 1=3n. Third: the
integrated structure factor for the limit-periodic tiling with 	2 ¼ 0,
computed from subsets with n 
 8. The straight red (dashed) line of slope
5 is a guide to the eye for observing the concavity of the curve. Bottom:
plot of the number variance for the limit-periodic tiling with 	2 ¼ 0.



is limit-periodic (Dekking, 1978; Queffelec, 1995). For the

substitution matrix ð1; 1; 2; 2Þ, the rule ðS! SL; L! SLSLÞ

produces a periodic tiling, and ðS! SL; L! SLLSÞ, for

example, produces a limit-periodic tiling.

For the limit-periodic cases, the analysis above would

suggest �!1, or, more properly, � is not well defined. We

present here an analysis of a particular case for which the

convergence of ZðkÞ to zero is indeed observed to be faster

than any power law.

The substitution rule

S! SL;L! SLLS ð54Þ

with S ¼ 1 and L ¼ 2 produces a limit-periodic tiling with

a ¼ 1 and p ¼ 3. Inspection of the point set (displayed in

Fig. 8) reveals that the number of points in the basis of each

periodic subset for n 	 2 is 2n�2. The density of points in

subset n 	 2 is ð1=4Þð2=3Þn. The substitution matrix

M ¼ ð1; 1; 2; 2Þ has eigenvalues 	1 ¼ 3 and 	2 ¼ 0.

The unusual scaling in this case arises from interference

effects associated with the form factors of the different peri-

odic subsets. Let kn ¼ 2�=3n, the fundamental wavenumber

for the nth subset, and let Xn denote the set of points in a

single unit cell of the nth subset. SðknÞ has contributions

coming from all subsets of order n and higher. (Subsets of

lower order do not contribute, as their fundamental wave-

number is larger than kn.) After some algebra, we find

AðknÞ ¼
1

3n

X
x2Xn

expð2�ix=3nÞ

þ
1

3nþ1

X
x2Xnþ1

expð2�ix=3n
Þ þ

X
x2Xnþ2

expð2�ix=3n
Þ

" #
:

ð55Þ

Numerical evaluation of the sums over the unit-cell bases

reveals that AðknÞ is suppressed by the interference from

subsets of higher order. Fig. 8 shows the behavior of the

quantity Fn ¼ 3njAðknÞj, revealing a rapid decay for small kn.

The red (dashed) line shows the curve Fx ¼ ð1=3Þð3xÞ
� lnð9xÞ=2,

which appears to fit the points well. An analytic calculation of

ZðknÞ is beyond our present reach. The middle panel of Fig. 8

shows the results of a numerical computation that includes all

peaks k ¼ 2�m=p6, with p ¼ 3. It is clear that ZðkÞ is concave

downwards on the log–log plot, consistent with the expecta-

tion that ZðkÞ goes to zero faster than any power of k. Note

that the curve is not reliable for the smallest values of k due to

the cutoff on the resolution of k values that are included. The

deviation from power-law scaling is most easily seen in the

increasing with n of the step sizes of the large jumps at

k ¼ 2�=3n. (Compare with the constant step sizes in Figs. 5, 6

and 7.)

For completeness, the bottom panel of Fig. 8 also shows a

plot of the number variance for this tiling. As expected, �2ðRÞ

is bounded from above. We note that the curve appears to be

piecewise parabolic, which is also the case for the standard

Fibonacci quasicrystal (Oğuz et al., 2017), though the tech-

nique for calculating �2ðRÞ based on projecting the tiling

vertices from a 2D lattice is not applicable here.

7. Discussion

We have presented a heuristic method for calculating the

hyperuniformity exponent � characterizing point sets gener-

ated by substitution rules that preserve the length ratios of the

intervals between points. The calculation relies only on the

relevant substitution matrix and an assumption that the tile

order under substitution does not lead to a periodic tiling. The

method performs well in that it yields a value of � consistent

with direct measurements of the scaling of �2ðRÞ in several

representative cases. This allows for a straightforward

construction of point sets with any value of � between �1

and 3.

It is well known that substitution rules can be divided into

distinct classes corresponding to substitution matrices with

eigenvalues that are not PV numbers leading to structure

factors SðkÞ that are singular continuous (Bombieri & Taylor,

1986; Baake et al., 2017), while substitution rules for which

j	2j< 1 yield Bragg peaks. Our analysis shows that this

distinction corresponds to � greater than or less than unity,

respectively. From the perspective of hyperuniformity, on the

other hand, the critical value of � is zero, which corresponds to

j	2j ¼ ð	1Þ
1=2. To achieve �< 0, a naı̈ve comparison to scaling

theories for systems with continuous spectra would suggest

that SðkÞmust diverge for small k. We find, however, that anti-

hyperuniformity, which does require sub-linear scaling of ZðkÞ,

can occur without any divergence both in cases where the

spectrum is singular continuous, as for non-PV substitutions,
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Table 1
Types of 1D tilings and their possible hyperuniformity classes.

A tick indicates that tilings of the given type exist, a dash that there are no such tilings, and a question mark that we are not sure whether such tilings exist.

Anti-
hyperuniform

Weakly
hyperuniform
(class III)

Logarithmically
hyperuniform
(class II)

Strongly hyperuniform

Class I Anomalous Gapped

�1 
 � 
 0 0<�< 1 � ¼ 1 1<� 
 3 �!1 � irrelevant

Periodic – – – – –
p

Quasiperiodic ? ?
p p

? –
Non-PV

p p
– – – –

Limit-periodic
p p p

?
p

–



and in cases where the spectrum consists of a dense set of

Bragg peaks, as in some limit-periodic systems.

Finally, our investigations led us to consider the results of

applying substitution rules for which 	2 ¼ 0, which turned up

a novel case of a limit-periodic tiling for which SðkÞ approa-

ches zero faster than any power law. The physical implications

of this type of scaling have yet to be explored.

The different tiling types and their hyperuniformity prop-

erties are summarized in Table 1. Examples of quasiperiodic

tilings in classes I and II are presented in Oğuz et al. (2017).

Note, however, that the class II case is not a substitution tiling.

We do not know whether some other construction methods

might yield quasiperiodic tilings that are in class III, anti-

hyperuniform, or even anomalous. For non-PV tilings (which

are substitution tilings by definition), at least two eigenvalues

of the substitution matrix must be greater than unity, which

rules out class II and class I. We conjecture that there are no

limit-periodic tilings in class I. We can prove this for D = 2

substitutions based on the fact that limit-periodicity requires

the two eigenvalues to be rational and the fact that M has only

integer elements requires their sum and product to be integers,

but we do not have a proof for D> 2.

APPENDIX A
Calculation of r2(R) for the period doubling limit-
periodic tiling

The substitution rule L! LSS, S! L (with S ¼ 1 and

L ¼ 2) applied to an initial L with its left boundary at x ¼ 1

produces a tiling with tile boundaries at all positions of the

form xm;j ¼ ð2iþ 1Þ4m, with j and m both running over all

positive integers (including zero). We are interested in

computing �2ðRÞ for the density

�ðxÞ ¼
P1

m;j¼0


 x� ð2jþ 1Þ4m½ �: ð56Þ

Recall that �2ðRÞ is the variance in the number of points

covered by a window of length 2R placed with its left edge at x

with uniform probability over all positive real values of x.

In Torquato et al. (2018), an expression for �2ðRÞ is derived

using equation (4) above. Here we show how �2ðRÞ can be

computed directly, thereby confirming the validity of equation

(4) for this limit-periodic system and arriving at a particularly

simple expression that can be analyzed in detail.

We first note that we can rewrite �ðxÞ as follows:

�ðxÞ ¼
P1

n;i¼0

ð�1Þn
ðx� i2nÞ: ð57Þ

To see this, first note that if x is an odd integer, then the only

term that contributes is n ¼ 0, i ¼ x, which gives a þ1. This is

the m ¼ 0 lattice of equation (56). More generally, if x is an

odd multiple of 2p, there are contributions only from all n 
 p,

and these have alternating signs. If p is odd, the number of

such contributions is even, yielding a density of zero. If p is

even, the sum of the contributions is þ1. The even values of p

correspond to all integer values of m in equation (56).

Let w ¼ 2R be the length of the window and let NnðxÞ be

the number of points in the nth lattice covered by the window.

It is convenient to take the window to be open at its left edge

and closed at its right edge. Define fwgn as the fractional part

of w=2n. It is convenient to think of w as being expressed in

base 2. fwgn is then given by the first n digits to the left of the

decimal point, plus all of the digits to the right. Note that NnðxÞ

depends on x only through fwgn; the integer part of w=2n adds

the same number of points independent of the value of x.

Furthermore, there are only two possible values of NnðxÞ,

which differ by unity. For the purpose of computing the

variance, we take these to be 0 and 1, and we work with the

densities of these values rather than the full values of Nn.

If the window is placed with its left edge at x ¼ j2n, the

contribution to the density from the nth lattice is 0. In order

for the window to cover an additional point, the left edge must

be placed such that fxgn > 1� fwgn. The average density

covered by the window of length w is thus

h�i ¼
P1
n¼0

ð�1Þnfwgn: ð58Þ

The density squared is

�2ðxÞ ¼
P1

n;i¼0

P1
‘;j¼0

ð�1Þnþ‘
ðx� i2nÞ
ðx� j2‘Þ: ð59Þ

A nonzero contribution to h�2i arises from an individual term

if and only if both the n and ‘ lattices contribute. For ‘> n, the

fraction of x’s for which this is true is

fwgn fwg‘ þ 2n�‘ð1� fwgnÞ
� �

: ð60Þ

The first term accounts for window placements that give a

contribution from the nth lattice. The light-gray bars in Fig. 9

show the values of x where the left edge of the window can be

placed to produce a nonzero contribution. The term in

parentheses counts the number of such intervals that occur

within a region that contribute from the ‘th lattice (indicated

by dark-gray bars in the figure) divided by the number of bars

in one lattice spacing of the ‘th lattice. We thus have

h�2i ¼
P1
n¼0

fwgnð�1Þ2n

þ 2
P1
n¼0

P1
‘> n

fwgn fwg‘ þ 2n�‘ð1� fwgnÞ
� �

: ð61Þ

Using ð�1Þ2n
¼ 1 and writing out h�i2 as a sum over n plus a

double sum with ‘> n, straightforward algebra with conve-

nient cancelations of some of the double sums yields

�2
¼ h�2

i � h�i2 ð62Þ
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Figure 9
Illustration for explaining the computation of a term in the double sum
expression for h�2i.



¼
X1
n¼0

ðfwgn � fwg
2
nÞ

þ 2
X1
n¼0

X1
‘¼nþ1

ðfwgn � fwg
2
nÞ
�1

2

� �‘�n

ð63Þ

¼
1

3

X1
n¼0

ðfwgn � fwg
2
nÞ: ð64Þ

This result has been confirmed to be in perfect agreement with

direct computations.

Equation (64) describes a piecewise quadratic function of w

(see Fig. 5). One immediately sees that all values of w of the

form 2‘ give the same result; they give fwgn ¼ 0 for n 
 ‘ and

the same infinite series for n>‘. Recalling that R ¼ w=2, the

shared value is

�2ð2n�1Þ ¼
1

3

X1
m¼1

1

2

� �m

�
1

4

� �m

¼
2

9
: ð65Þ

To show that the upper envelope of �2 grows logarithmically,

we first prove an upper bound that grows only logarithmically,

then identify a special sequence of window length values for

which the growth is logarithmic. The upper bound is obtained

by replacing all terms fwgn � fwg
2
n in the sum with the

maximum value 1=4 for all n< 1þ log2 d, then replacing the

remaining infinite series with its maximal value, obtained by

maximizing
P

nðx=2n � x2=4nÞ. The result is

�2ð2n�2 <R< 2n�1Þ<
1

12
ð3þ nÞ: ð66Þ

To show that there is a sequence of R values for which �2

grows logarithmically, consider w of the form 2n=3. Note that

the binary representation of w is 101 . . . 01:0101 . . . for n odd

and . . . 101 . . . 0:1010 . . . for n even. Again we consider the

contributions from ‘ 
 n, then sum the remaining series. The

value of fwg‘ oscillates between 1/3 and 2/3 for ‘< n.

Straightforward algebra yields

�2
ðR ¼ 2n=3Þ ¼

2n

27
þ

26

81
; ð67Þ

which clearly grows logarithmically with R. Note that the

coefficient of n here is 2/27, reasonably close to the coefficient

of 1/12 derived for the upper bound, and that, as shown in

Fig. 5, these points are quite close to the true maxima for

w< 2n.
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Godrèche, C. (1989). J. Phys. A Math. Gen. 22, L1163–L1166.
Godreche, C. & Luck, J. M. (1990). J. Phys. A Math. Gen. 23, 3769–

3797.
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