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Non-coplanar 18-beam X-ray pinhole topographs for a silicon crystal were

computer simulated by fast Fourier transforming the X-ray rocking amplitudes

that were obtained by solving the n-beam (n = 18) Ewald–Laue dynamical

theory (E-L&FFT method). They were in good agreement with the

experimentally obtained images captured using synchrotron X-rays. From this

result and further consideration based on it, it has been clarified that the X-ray

diffraction intensities when n X-ray waves are simultaneously strong in the

crystal can be computed for any n by using the E-L&FFT method.

1. Introduction

The present authors have reported coplanar eight-beam

pinhole topographs experimentally obtained and computer

simulated by fast Fourier transforming (FFT) the rocking

amplitudes calculated based on the n-beam Ewald–Laue

(E-L) theory. This technique (E-L&FFT simulation) was

reported by Kohn & Khikhlukha (2016) and Kohn (2017). In

Okitsu et al. (2019), it was shown that the E-L&FFT simula-

tion can also be performed for a case where the X-rays do not

exit from a single plane (hereafter this paper is denoted as O et

al. 2019). Furthermore, the feasibility of calculating the X-ray

intensities diffracted from a crystal that has plural facets, as

shown in Fig. 9 of O et al. (2019), was discussed. In addition to

this, if the E-L&FFT simulation could be performed even for a

case where n 6¼ f3; 4; 5; 6; 8; 12g (non-coplanar case), the

intensities of X-ray diffraction spots from a lysozyme (protein)

crystal as shown in Fig. 1(b) could be calculated. Here a large

number (over 200) of reflected X-ray beams are simulta-

neously strong.

2. Experimental

Fig. 2 shows the experimental arrangement. The horizontally

polarized synchrotron X-rays at BL09XU of SPring-8 were

monochromated to be 22.0 keV. The phase retarder system

was not used in the present experiment. The beam size was

limited to 25 � 25 mm. The goniometer system on which a

[111]-oriented floating-zone (FZ) silicon crystal was mounted

was adjusted such that the 000 forward-diffracted (FD) and

440, 484, 088, 484 and 404 transmitted-reflected (TR) X-rays

are simultaneously strong; this was achieved by monitoring the

000 FD, 440 and 484 TR X-rays with PIN photodiodes. The

thickness of the crystal was 10.0 mm. An imaging plate (IP)
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was placed 24 mm behind the crystal such that the surface of

the IP was parallel to the exit surface of the crystal.

In addition to the hexagonal six-beam topograph images, a

further 12 images surrounding them were found on the IP as

shown in Fig. 3(a). The exposure time was 300 s.

3. Computer simulation

The length of the wavevector K (= 1/�, where � is the wave-

length in vacuum) was calculated to be 1.7702394 Å�1 for a

photon energy of 22.0 keV. The position of the Laue point La

whose distance from reciprocal-lattice nodes 000, 440, 484,

088, 448 and 404 was an identical value K, was calculated on a

computer. From Fig. 3(a), other reciprocal-lattice nodes were

likely to exist in the vicinity of the surface of the Ewald sphere;

that is, their distance from La was approximately jna�j � 2K,

i.e. jnj � 2a=� is the sufficient condition for a reciprocal-lattice

node with indices hkl to exist on the surface of the Ewald

sphere. Here, a is the lattice constant of the silicon crystal,

a� ¼ 1=a and n 2 fh; k; lg. Because 2a=� was calculated to be

18.21, the distances of reciprocal-lattice nodes with indices hkl

from La were calculated in the range of �18 � n � 18. Then,

in addition to the six reciprocal-lattice nodes, others with

i 2 f6; 7; 8; . . . ; 17g were observed, as summarized in Table 1.

Here, i is the ordinal number of the reciprocal-lattice node

in the first column of Table 1. Then, all topograph

patterns surrounding 000 FD, 440, 484, 088, 448 and 404

TR images have been indexed as shown in Fig. 3(b). For

obtaining this figure, a photon energy of 21.98415 keV was

assumed. It was observed that the ith reciprocal-lattice nodes

(i 2 f6; 7; 8; . . . ; 17g) were on another circle (drawn as a blue

circle in Fig. 4) outside the circle (drawn as a red circle whose

centre is Q in Fig. 4) on which the inner six reciprocal-lattice

nodes are present. For these 18 FD or TR X-ray beams with

indices hi; ki; li ði 2 f0; 1; 2; . . . ; 17gÞ, the Bragg reflection

angle ð�Bi
Þ, �i, �Ki=K, �i and �hi

were calculated and are

summarized in Table 1. �i is the angle spanned by LaQ
��!

and

LaHi

��!
where Hi is the ith-numbered reciprocal-lattice node in

Fig. 4. �Ki=K ¼ ðjLaHi

��!
j � KÞ=K. �i is the inclination angle of

LaQ
��!
� LaHi

��!
from LaQ

��!
� LaH0

���!
.

Fig. 5 is a drawing around the Laue point La. Here, let

another Laue point La0i be defined in the vicinity of La as

shown in Fig. 5 such that jLa0iHi

���!
j ¼ K. Because Q is the
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Figure 2
Schematic drawing of the experimental setup. The horizontally polarized
synchrotron X-rays were incident on a [111]-oriented floating-zone (FZ)
silicon crystal with a thickness of 10.0 mm such that the six beams are
simultaneously strong. The angle of the monochromator was adjusted
such that the photon energy of the X-rays was 22.0 keV. However, the
practical value of the photon energy was considered to be marginally
different from this value. An IP was placed 24 mm behind the crystal.

Figure 1
Diffraction spots for (a) a sucrose (small molecular weight) crystal and
(b) a hen egg-white lysozyme (protein) crystal taken on the imaging plate
(IP) of a Rigaku Micro7 HFM-AXIS7 diffractometer. The distance
between the crystal and the IP was 150 mm. The IP was exposed for 60 s
by oscillating the crystal in the range of 0.1� for both (a) and (b).



circumcentre of the normal hexagon whose vertices are Hi

(i 2 f0; 1; 2; 3; 4; 5g) as shown in Fig. 4, LaLa0i
���!

is evidently 0
!

for i 2 f0; 1; 2; 3; 4; 5g and is an identical vector in the direc-

tion of LaQ
��!

=jLaQ
��!
j (= nzÞ for i 2 f6; 7; . . . ; 17g. Here, let �00i be

defined such that �00i nz ¼ LaLa0i
���!

as shown in Fig. 5. ki � K on

the left-hand side of equation (4) in O et al. 2019 can be

described as follows:

ki � K ¼ si � P
0
1La0i
���!

ð1Þ

¼ si � P01P1

��!
þ P1La
��!

þ LaLa0i
���!� �

: ð2Þ

Because P01P1

��!
¼ �nz, P1La

��!
¼ K�ð0Þeð0Þ0 þ K�ð1Þeð1Þ0 and LaLa0i

���!
= �00i nz, where �ð0Þ and �ð1Þ are the two-dimensional angular

deviation of P1 from La as shown in Fig. 5. Therefore, equa-

tion (2) can be modified as follows:

ki � K ¼ si � �nz þ K�ð0Þeð0Þ0 þ K�ð1Þeð1Þ0 þ �
00
i nz

� �
ð3Þ

¼ � cos �i þ K S
ð0Þ
i;0�
ð0Þ þ S

ð1Þ
i;0�
ð1Þ

� �
þ �00i cos �i: ð4Þ

The polarization factors C and S are defined as

eðmÞj ¼ S
ðmÞ
i;j si þ C

ð0;mÞ
i;j e

ð0Þ
i þ C

ð1;mÞ
i;j e

ð1Þ
i : ð5Þ

In the present 18-beam case, e
ð0Þ
i was defined to be

si � smodðiþ3;6Þ=jsi � smodðiþ3;6Þj for i 2 f0; 1; 2; 3; 4; 5g and to

be si � s½modði;12Þþ6	=jsi � s½modði;12Þþ6	j for i 2 f6; 7; 8; . . . ; 17g.

e
ð1Þ
i was defined to be si � e

ð0Þ
i for i 2 f0; 1; 2; . . . ; 17g.

Laue’s fundamental equation of the dynamical theory (von

Laue, 1931; Authier, 2005) restricts the amplitude and wave-

vector of the Bloch wave as follows:
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Figure 3
(a) Experimentally obtained and (b) E-L&FFT simulated 18-beam
pinhole topographs. (b) was obtained by the E-L&FFT simulation under
an assumption of an incidence of X-rays with a photon energy E =
21.98415 keV (�E = E � E0 = �0.25 eV, where E0 = 21.98440 keV).

Figure 4
Six reciprocal-lattice nodes are on a red circle in reciprocal space. Outside
of this circle, a blue circle was observed on which 12 reciprocal-lattice
nodes were present. Q is the centre of the red circle.

Figure 5
Geometry around the Laue point La. Pl0 and Pl3 are planes whose
distance from H0 and H3 is K. Plh is a plane normal to nz (downward
surface normal). The Laue point La and point P001 exist on Plh. Pli

ði 2 f1; 2; 4; 5; . . . ; 17gÞ were not drawn for simplicity. La0i is a point
whose distance from Hi ði 2 f6; 7; . . . ; 17gÞ is K. P01 is the initial point of
the wavevector of the Bloch wave. P01;k that appears in equation (14) in O
et al. (2019) is the kth-numbered P01, i.e. the initial point of the wavevector
of the kth-numbered Bloch wave where k 2 f1; 2; 3; . . . ; 2ng.



k2
i � K2

k2
i

Di ¼
Xn�1

j¼0

�hi�hj
Dj

� �
?ki
: ð6Þ

Here K ¼ 1=�, where � is the wavelength of the X-rays in

vacuum, and ½Dj	?ki
is the component vector of Dj perpendi-

cular to ki. By applying the approximation ki þ K ’ 2K,

equation (6) becomes

ki � Kð ÞDi ¼
K

2

Xn�1

j¼0

�hi�hj
Dj

� �
?ki
: ð7Þ

Substituting equation (4) into equation (7), the following

equation can be obtained:

�DðlÞi ¼ � K S
ð0Þ
i;0�
ð0Þ þ S

ð1Þ
i;0�
ð1Þ

� �
= cos �i þ �

00
i

h i
D
ðlÞ
i

þ
K

2 cos �i

Xn�1

j¼0

�hi�hj

X1

m¼0

C
ðl;mÞ
i;j D

ðmÞ
j : ð8Þ

Equation (8) is represented by using a vector and a matrix as

follows:

�D ¼ A0D: ð9Þ

Here D is a 2n-order column vector and A0 is a 2n� 2n matrix

whose element in the pth row ðp ¼ 2iþ l þ 1Þ and qth column

ðq ¼ 2jþmþ 1ÞA
0

p;q is given by

A
0

p;q ¼ K�hi�hj
C
ðl;mÞ
i;j =ð2 cos �iÞ

� �p;q K S
ð0Þ
i;0�
ð0Þ
þ S

ð1Þ
i;0�
ð1Þ

� �
= cos �i þ �

00
i

h i
: ð10Þ

Here, �p;q is the Kronecker delta. Moreover, for the present

18-beam case, the procedure described by equations (10)–(16)

in O et al. 2019 can be used to solve the eigenvalue problem of

equations (9) and (10). The values of �i, �hi�hj
and �00i listed in

Tables 1 and 2 were used.

Furthermore, for the FFT to compute the E-L&FFT topo-

graphs, the description using equations (17)–(20) in O et al.

2019 can also be applied to the present 18-beam case. The FFT

in equation (20) in O et al. 2019 was carried out with L =

50 mm and N = 4096.

It required 1080 s (890 s for solving the eigenvalue problem,

20 s for FFT and 170 s for writing the topographs to the hard

disk) to obtain the 18 topograph images shown in Fig. 3(b)

using one node (Intel Xeon E5-2680v3) of the supercomputer

system ‘Sekirei’ of the Institute of Solid State Physics of the

University of Tokyo. The calculation to solve the eigenvalue

problem for a 36 � 36 matrix was several times as time-

consuming as the coplanar eight-beam case solving the

eigenvalue problem described with two 16 � 16 matrices

described in O et al. 2019.
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Table 1
The position of the point La whose distance from the ith-numbered reciprocal-lattice nodes Hi ði 2 f0; 1; 2; 3; 4; 5gÞ is an identical length K, calculated
for a photon energy of 22.0 keV.

The Miller indices were 000, 440, 484, 088, 440 and 404. �i (�) ði 2 f0; 1; 2; . . . ; 17gÞ is the angle spanned by the directions of nz and LaHi

��!
. nz is a unit vector in the

direction of ½111	 (downward surface normal). When Ki ¼ jLaHi

��!
j, �Ki=K ¼ ðKi � KÞ=K. �i is the inclination angle of nz � LaHi

��!
from nz � LaH0

���!
. �ðrÞhi

and �ðiÞhi
are,

respectively, the real and imaginary parts of the hith-order Fourier coefficient of the electric susceptibility as calculated using XOP 2.3 (Sanchez del Rio & Dejus,

1998) for a photon energy of 22.0 keV. Identical values of �ðrÞhi
and �ðiÞhi

were used for all the simulations shown in Figs. 3, 6 and 7 because the energy differences from

22.0 keV are negligible.

Ordinal
number i hi ki li �Bi

(�) �i (�) �Ki=K � 104 �i (�) �ðrÞhi
� 106 �ðiÞhi

� 108

0 0 0 0 0.0000 35.9750 0.0000 0.0000 �2.004400 �0.625153
1 4 4 0 17.0806 35.9750 0.0000 60.0000 �0.773093 �0.550274
2 4 8 4 30.5793 35.9750 0.0000 120.0000 �0.296936 �1.136870
3 0 8 8 35.9750 35.9750 0.0000 180.0000 �0.214413 �0.375281
4 4 4 8 30.5793 35.9750 0.0000 240.0000 �0.296936 �0.426348
5 4 0 4 17.0806 35.9750 0.0000 300.0000 �0.773093 �0.550274
6 1 1 3 9.9161 50.9503 �1.5751 19.1066 �0.784785 �0.423082
7 3 3 3 15.6521 50.9503 �1.5751 40.8934 +0.586813 +0.396937
8 5 7 1 26.7218 50.9503 �1.5751 79.1066 +0.285189 +0.327801
9 5 9 1 32.4855 50.9503 �1.5751 100.8933 �0.183684 �0.288538
10 3 11 5 40.2726 50.9503 �1.5751 139.1066 +0.128538 +0.238282
11 1 11 7 42.7632 50.9503 �1.5751 160.8934 +0.116815 +0.223557
12 3 9 9 42.7632 50.9503 �1.5751 199.1066 �0.116815 �0.223557
13 5 7 9 40.2726 50.9503 �1.5751 220.8934 +0.128538 +0.238282
14 7 3 7 32.4855 50.9503 �1.5751 259.1066 +0.183684 +0.288538
15 7 1 5 26.7218 50.9503 �1.5751 280.8934 �0.285189 �0.327801
16 5 1 1 15.6521 50.9503 �1.5751 319.1066 +0.586813 +0.396937
17 3 1 1 9.9161 50.9503 �1.5751 340.8934 �0.784785 �0.423082

Table 2
Values of �00i for �E ð¼ E� E0Þ are �0.75, �0.50, �0.25, 0.00, +0.25,
+0.50 and +0.75 eV, where E0 = 21.98440 keV.

Fig. No. of the
simulation

Photon energy
E (keV)

E� E0

�E (eV) �00i (m�1)

Fig. 6(a) 21.98365 �0.75 +2.11782 � 105

Fig. 6(b) 21.98390 �0.50 +1.40582 � 105

Fig. 3(b) 21.98415 �0.25 +0.69386 � 105

Fig. 6(c) 21.98440 0.00 0.01805 � 105

Fig. 6(d) 21.98465 +0.25 �0.72993 � 105

Fig. 6(e) 21.98490 +0.50 �1.44176 � 105

Fig. 6(e) 21.98515 +0.75 �2.15356 � 105



4. Results

Fig. 6(c) shows the E-L&FFT simulated result with a photon

energy of 21.98440 keV. In this figure, X-ray diffraction

intensities due to the outer 12 reciprocal-lattice nodes

on the blue circle in Fig. 4 are as strong as the inner six

diffraction patterns that are substantially different from

the experimentally obtained topograph in Fig. 3(a). However,

the outer 12 topograph patterns are almost unobservable

when the energy deviation from E0 (= 21.98440 keV) is

over 0.50 eV. Thus the present authors conclude that the

photon energy of the synchrotron X-rays used in the present

experiment was 
21.98415 keV with which Fig. 3(a) was

obtained.

Fig. 7 shows enlargements of 088 TR and 000 FD images

from Figs. 3(a) and 3(b). There is remarkable consistency

between the experimentally obtained and the E-L&FFT

simulated images.

5. Discussion

Fig. 8 shows an image of 088 TR X-rays obtained by the

E-L&FFT simulation omitting the presence of the outer 12

reciprocal-lattice nodes. The assumed photon energy was

identical to that in Fig. 7 [S(a)] (21.984150 keV). The vertical

centre line in Fig. 8 was divided into two lines, whereas only

one vertical line was observed in Fig. 7 [S(a)]. Further, an

evident difference in the central part was observed between

Fig. 7 [S(a)] and Fig. 8. It has been clarified that the presence

of the outer 12 reciprocal-lattice nodes affected the features of

the inner six diffraction patterns.

Incidentally, referring to Fig. 5, let another Laue point La000
be defined at a position on Pl0 such that it is not far from La

and P1La000
���!

¼ K�ð0Þ0eð0Þ0 þ K�ð1Þ0eð1Þ0 . Further, let La00i be defined

such that La000La00i
����!

¼ �000i nz on Pli whose distance from Hi is

K (i 2 f0; 1; 2; . . . ; n� 1g). By replacing �ð0Þ, �ð1Þ and �00i in

equations (9) and (10) with �ð0Þ0, �ð1Þ0 and �000i , respectively, the

following equation is obtained:

�D0 ¼ A00D0: ð11Þ

Here, D0 is a 2n-order column vector and A00 is a 2n� 2n

matrix whose element in the pth row ðp ¼ 2iþ l þ 1Þ and qth

column ðq ¼ 2jþmþ 1ÞA
00

p;q is given by

A
00

p;q ¼ K�hi�hj
C
ðl;mÞ
i;j =ð2 cos �iÞ

� �p;q K S
ð0Þ
i;0�
ð0Þ0 þ S

ð1Þ
i;0�
ð1Þ0

� �
= cos �i þ �

000
i

h i
: ð12Þ

This way of defining La00i , �ð0Þ0, �ð1Þ0, �000i and A00 and equations

(11) and (12) are more general than equations (9) and (10).
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Figure 6
When the photon energy is 21.9843937 keV, the inner six and outer 12
reciprocal-lattice nodes (see Fig. 4) can be present simultaneously on an
identical surface of the Ewald sphere. The deviations of photon energies
from E0 (= 21.98440 keV) were assumed to be �0.75, �0.50, 0.00, +0.25,
+0.50 and +0.75 eV for (a), (b), (c), (d), (e) and (f), respectively.

Figure 7
½EðaÞ	 and ½EðbÞ	 are enlargements of 088 TR and 000 FD X-ray patterns
of Fig. 3(a) obtained experimentally. ½SðaÞ	 and ½SðbÞ	 are enlargements of
088 TR and 000 FD X-ray patterns of Fig. 3(b) obtained by the E-L&FFT
simulation.



Even when La cannot be defined as shown in Fig. 5, the

eigenvalue problem represented by (11) can be solved. Then,

the intensity distribution of reflected X-rays can be calculated

with the E-L&FFT method when a pinhole X-ray beam is

incident on an arbitrary position of the surface of the crystal.

This is also the case for a crystal as shown in Fig. 9 of O et al.

2019 owing to the description given therein. The total inten-

sities of X-rays reflected from the crystal completely bathed in

the incident X-rays can be calculated by incoherently super-

posing the pinhole topograph intensities with the incident

position two-dimensionally scanned over the incident side of

the crystal.

6. Summary

In the present non-coplanar 18-beam case, the 18 reciprocal-

lattice nodes are on two circles, drawn in red and blue in Fig. 4.

The most important aspect of the present work is that a non-

coplanar n-beam case for n 6¼ f3; 4; 5; 6; 8; 12g was computer

simulated using the E-L&FFT method and was reasonably

consistent with the experimentally obtained result. The

constraint that n 2 f3; 4; 5; 6; 8; 12g has been originally placed

such that n reciprocal-lattice nodes are on a circle in the

reciprocal space. In the case of protein crystals as shown in Fig.

1(b), the situation where a large number of reciprocal-lattice

nodes are simultaneously present in the vicinity of the surface

of the Ewald sphere cannot be circumvented.

However, the constraint on n has been removed completely

from the n-beam E-L&FFT method to calculate the X-ray

diffraction intensities. N is the number of reciprocal-lattice

nodes present in the vicinity of the surface of the Ewald sphere

whose presence should be considered. Another difficulty

caused by the complex shape of the crystal has also been

overcome with the description in O et al. 2019. Thus, the

present authors could calculate the intensities of X-ray

diffraction spots as shown in Fig. 1(b) under the assumption

that the crystal is perfect.
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Figure 8
E-L&FFT simulated 088 TR topograph images with a photon energy of
21.98415 keV under an assumption of the six-beam case; here, the 000 FD,
440, 484, 088, 448 and 404 TR X-rays are strong by neglecting the outer 12
beams. An evident discrepancy is observed between this figure and Fig. 7
½SðaÞ	.
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