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Under the anomalous transmission condition in the Bragg mode, X-ray

interference fringes were observed between two beams with different hyperbolic

trajectories in a very weakly bent plane-parallel perfect crystal with negative

strain gradient. The origin of the fringes was analysed based on the dynamical

theory of diffraction for a distorted crystal. In the reflected beam from the

entrance surface, the interference fringes were observed between once- and

twice-reflected beams from the back surface. In the transmitted beam from the

back surface, the interference fringes were observed between the direct beam

and once-reflected beam from the entrance surface. In the emitted beam from

the lateral surface, the interference fringes were observed between the beams

after different numbers of reflections in the crystal. The multiply reflected beams

were formed by a combined result of long propagation length along the beam

direction with large divergence of the refracted beams when the strain gradient

was negative. The period of these interference fringes was sensitive to very weak

strain, of the order of 10�7.

1. Introduction

When X-rays are incident on a thin plane-parallel perfect

crystal in the symmetric Bragg geometry, the refracted beam

in the crystal reaches the back surface as illustrated in Fig.

1(a). A part of the beam is reflected (S4) and the rest is emitted

from the back surface as the transmitted beam (Pt). The

refracted beam is referred to as the beam corresponding to the

Poynting vector excited at a point on the dispersion surface

defined in the dynamical theory of diffraction. The refracted

beam is called the wavefield by Authier (2001). In the two-

wave approximation, it is composed of two waves: one is

propagating in the forward direction and the other in the

diffracted-wave direction. In an anomalous transmission

condition, the divergence of the refracted beam is much larger

than that of the incident wave (Authier, 2001). If the diver-

gence angle of the refracted beam is large enough, inter-

ference fringes can be formed between once (S1)- and twice

(S2)-reflected beams from the back surface (abbreviated as

IFRB) as shown in Fig. 1(a). Similar interference fringes can

be observed in the transmitted beam (IFTB) from the back

surface. If the crystal is small along the incident azimuth

direction (x) compared with the propagation length of the

X-ray, interference fringes can be observed in the emitted

beams from the lateral surface both in the diffracted- (IFLSD)

and the transmitted-wave directions (IFLST). Both IFLSD

and IFLST have been observed by Fukamachi et al. (2004,

2005) from a thin Ge plane-parallel crystal. These fringes were
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formed by interference between the beams directly propa-

gating to the lateral surface (S3) and once reflected from the

back surface (S4) (Hirano et al., 2008, 2009a,b; Fukamachi,

Hirano et al., 2011).

When a perfect crystal is bent with positive strain gradient

(strain gradient parameter defined below � > 0), the trajectory

of the refracted beam shows a hyperbolic form opening up and

some refracted beams return to the entrance surface without

reaching the back surface such as Sm1, Sm2 and S0m1 in Fig. 1(b),

as pointed out by Gronkowski & Malgrange (1984). These

refracted beams are called mirage beams by Authier (2001).

Fig. 1(c) shows the tie points corresponding to mirage beams

in the range from d1 to d2 on the dispersion surface. The

interference fringes formed by two mirage diffraction beams

(IFMD) have been observed by Fukamachi et al. (2010) and

Jongsukswat et al. (2012a, 2013). It was pointed out by

Fukamachi, Jongsukswat et al. (2011) and Jongsukswat et al.

(2012b) that interference fringes between the mirage diffrac-

tion beam S0m1 and the beam reflected from the back surface

S02 (IFMRB) are expected to be observed as shown in

Fig. 1(b).

If a perfect crystal is bent with negative strain gradient

(� < 0), the trajectory of the refracted beam shows a hyper-

bolic form opening down and the beam always reaches the

back surface as shown in Fig. 2(a). Fig. 2(c) shows that the tie

points corresponding to the refracted beam S01 and S02 move

on the dispersion surface in the range indicated by red lines.

IFRB can be observed between two beams, i.e. one (S02)

reflected once from the back surface and the other (S004)

reflected twice from the back surface in Fig. 2(b). � is the angle

of the refracted beam from the surface at the incident point.

Similar interference fringes can be observed between two

beams n and n + 1 (n is a positive integer) times reflected from

the back surface. IFTB also can be observed for � < 0.

In this paper, we will report on the measurement of IFRB,

IFTB, IFLSD and IFLST from a weakly bent Si plane-parallel

crystal for � < 0 and the comparison of these interference

fringes with those for � > 0. We will analyse the interference

fringes of IFRB and IFTB based on the dynamical theory of

diffraction for a distorted crystal and

reveal some characteristics of them for

� < 0.

2. Experimental

The sample was a plane-parallel single

Si crystal. The top (entrance) and

bottom (back) surfaces of the crystal

were polished by a non-disturbance

polishing method at Sharan Inc. The

size was 50 mm long, 15 mm wide and

0.28 mm thick. One end of the sample

was clamped and the other end was free

along the gravity direction as shown in

Fig. 3(b). The sample was bent due to

gravity and the residual strain. The

experiments were carried out using

X-rays from synchrotron radiation at

the bending-magnet beamline 15C,

Photon Factory, Tsukuba, Japan. The

measuring optical system is shown in

Fig. 3(a). The X-rays were �-polarized

and had a very narrow band of energy

achieved by using an Si(111) double-
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Figure 2
Schematic illustrations of the beam trajectories in a bent plane-parallel crystal for � < 0. (a) S1

represents the beam excited when Ws = �1. It propagates the longest distance (xmax) in the x
direction, reaches the back surface at B1 and is partly reflected as the beam S2. S01 represents a beam
excited when Ws < �1 and S02 the corresponding reflected beam from the back surface. (b) Beam
trajectories to form IFRB and IFTB. IFRB from A2 are formed by interference between the beam
S02 once reflected and the beam S0 04 twice reflected from the back surface. IFTB from B02 are formed
by interference between the beam S0

1 reaching directly the back surface and the beam S0 03 once
reflected from the back surface. (c) The variation range of the tie point on the dispersion surface for
S01 and S02. The range from d1 to d2 on branch (1) is for S01 and that from d02 to d01 on branch (2) is
for S02. �BbB and �B3bB are the angles of the refracted beams in the BbB and the B3bB modes from
the surface, respectively.

Figure 1
Schematic illustrations of the beam trajectories in a plane-parallel crystal.
(a) Beam trajectories in an unbent crystal. P0 represents the incident
wave on the surface, Ph the diffracted wave and Pt the transmitted wave.
(b) Beam trajectories in a bent crystal when the X-ray is incident on the
expanded surface due to bending (� > 0). S01 represents the beam
touching the back surface at B1 and S3 the beam reflected from the
entrance surface after reflection from the back surface. (c) The variation
range of the tie point on the dispersion surface for mirage beams. d1 on
branch (1) is the tie point at the incident point and d2 on branch (2) is that
at the emitted point. Lo is the Lorentz point and G the Bragg gap. The
distance from the incident point of the X-ray (A0) to the edge of the
crystal is xL.



crystal monochromator. The X-ray energy was 11 100 eV,

which was determined by measuring XANES (X-ray absorp-

tion near-edge structure) from a thin Ge plate near the Ge K

absorption edge (11 103 eV) with an accuracy of �0.5 eV. The

distance from the source to slit 1 was 30 m and that from slit 1

to the sample was 300 mm. The vertical width of slit 1 was

0.02 mm. In Fig. 3(a), Ph, Pr, Pt, Plr and Plt are the intensities of

the diffracted wave, the reflected beam except for the

diffracted beam, the transmitted beam, the emitted beam from

the lateral surface in the diffracted-wave direction and that in

the transmitted-wave direction, respectively. As shown in Fig.

3(b), the X-rays were incident on the crystal with the azimuth

perpendicular to the bending direction. The incident glancing

angle was fixed at the angle where the rocking curve of Pr in

Fig. 3(e) showed the peak and the anomalous transmission was

maximized. The X-ray intensities were measured by the

scintillation counters (SC1 and SC2) and recorded on a

nuclear plate (ILFORD L4; emulsion thickness, 25 mm). The

incident and reflected X-ray geometries with respect to the

sample are shown for positive and negative values of � in Figs.

3(c) and 3(d), respectively. For observation of IFRB, it is

important to make the value of |�| small. If l denotes the

distance from the free edge to the incident plane and L that

from the free edge to the fixed edge, |�| is proportional to

l2=L4 (Jongsukswat et al., 2013). In the present experiment the

distance l was between 3.25 and 4 mm, and L was 48 mm.

Fig. 4 shows the section topographs of Si(220) measured in

the diffracted direction under only the gravity force. Fig. 5

shows those measured in the transmitted-wave direction. The

strain gradient was negative in Fig. 4(a) and Fig. 5(a), and

positive in Fig. 4(b) and Fig. 5(b). The exposure time for

taking one topograph was 120 min for Fig. 4(a), 60 min for Fig.

5(a), 15 min for Fig. 4(b) and 30 min for Fig. 5(b). In Fig. 4(a)

the interference fringes in the upper part are attributed to

IFLSD and those in the lower part to IFRB. The vertical

direction of the lower part corresponds to the distance x from

the incident point of the X-rays on the entrance surface and

that in the upper part corresponds to the distance z from the

edge of the entrance surface on the lateral surface. The hori-

zontal direction corresponds to distance l. Ten dark lines are

observed in IFRB as indicated by white lines. The plot of

digitized intensities of IFRB is given on the left side of the

figure, showing ten peaks in the range of x between 5.5 and

8.5 mm. The number of interference fringes in Fig. 4(a) is

larger than that in Fig. 4(b) where the number is three in the

same range of x. The distance between two adjacent dark lines

in IFRB increases as a function of x, which is a similar
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Figure 4
Section topographs of Si(220) in the Bragg mode recorded in the
diffracted-wave direction for (a) � < 0 and (b) � > 0. The distance xL is
8.5 mm. The left side of (a) shows the digitized intensities of IFRB. The
horizontal direction is the distance l.

Figure 3
(a) A schematic diagram of the measuring system. xL is the distance
between the incident point of the X-rays and the crystal edge of the
entrance surface. SC1 and SC2 are the scintillation counters set up in the
reflected- and transmitted-wave directions, respectively. (b) Sample
geometries. (c) and (d) the incident- and reflected-wave geometries with
respect to the samples for � > 0 and � < 0, respectively. (e) The measured
rocking curves of Ph, Pt and Pr.

Figure 5
Section topographs of Si(220) in the Bragg mode recorded in the
transmitted-wave direction for (a) � < 0 and (b) � > 0. The distance xL is
8.5 mm. The left side of (a) shows the digitized intensities of IFTB.



variation to that in IFMRB shown in Fig. 4(b). The distance

between two adjacent dark lines in IFLSD in Fig. 4(a) is

smaller than that in Fig. 4(b). The dark contrast indicated by

the white arrow in Fig. 4(b) is accretions on the nuclear

emulsion plate. In Fig. 5(a) the interference fringes in the

upper part are attributed to IFTB and those in the lower part

to IFLST. The number of dark lines in IFTB indicated by

white lines is five in the same range of x. The horizontal

direction is the same as in Fig. 4. The distance between two

adjacent dark lines increases as a function of x, which is a

similar variation to that in IFRB. In Fig. 5(b) the interference

fringes in the upper part are attributed to IFTB and those in

the lower part to IFLST. The number of dark lines in ITFB for

� < 0 is almost the same as that for � > 0 in the same range of x.

3. Theoretical basis

3.1. Beam trajectory

In the dynamical theory of diffraction, the deviation para-

meter W from an exact Bragg condition is defined by

W ¼
sin 2�B

Cð�h��hÞ
1=2

�� �B þ
j�0j

sin 2�B

� �� �
: ð1Þ

Here � is the incident glancing angle, �B is the Bragg angle, C

the polarization factor and �h the hth Fourier component of

X-ray polarizability. By using the deviation parameter at the

incident point (Ws), the trajectory of the refracted beam for

jWsj � 1 in a non-absorbing bent crystal with constant strain

gradient is given by

�z

tan �B

þWs

� �2

� �xþ sðWsÞðW
2
s � 1Þ1=2

� �2
¼ 1; ð2Þ

according to Gronkowski & Malgrange (1984). The coordi-

nates x and z are parallel and inward normal to the crystal

surface and the origin is taken at the incident point of the

X-ray. sðWsÞ is equal to 1 for Ws > 1 and�1 for Ws < � 1. The

strain gradient parameter � is given by

� ¼
�

Cð�h��hÞ
1=2

@2ðh � uÞ

@x0@xh

; ð3Þ

where h is the reciprocal-lattice vector, u the displacement

vector of an atom and � the X-ray wavelength. x0 and xh are

the coordinates of the transmitted- and the diffracted-wave

directions, respectively. According to Yan & Noyan (2006) and

Yan et al. (2007), � is related to the strain gradient "0zz as

� ¼
2 sin2 �B tan �B

Cð�h��hÞ
1=2

"0zz: ð4Þ

The strain in a bent plane-parallel crystal of thickness H is

given by

"zz ¼
d� d0

d0

¼ "0zz z�
H

2

� �
; ð5Þ

where d and d0 are the distances between two adjacent lattice

planes normal to the crystal surface with and without distor-

tion due to bending, respectively.

The trajectory of the refracted beam becomes a hyperbola

for � 6¼ 0 by using equation (2). Its vertex position (xa, za) is

given by

xa ¼
�sðWsÞðW

2
s � 1Þ

1=2

�
; ð6Þ

za ¼
� tan �B

�
Ws � sðWsÞ
� �

: ð7Þ

The beam trajectory for positive strain gradient has been

studied in previous works (Fukamachi et al., 2010; Fukamachi,

Jongsukswat et al., 2011; Jongsukswat et al., 2012a,b, 2013).

The vertex of the hyperbola is located inside the crystal when

� > 0 and Ws < � 1 according to equation (7). Some refracted

beams such as Sm1 and Sm2 return to the entrance surface

without touching the back surface as depicted in Fig. 1(b). On

the other hand, when the strain gradient is negative (� < 0),

the vertex is located outside the entrance surface. The beam

trajectory is bent downwards in the crystal and all the beams

reach the back surface as depicted in Figs. 2(a) and 2(b). The

refracted beam corresponding to Ws ¼ �1 propagates in the

crystal when �< 0 , while such a refracted beam is not excited

when � > 0. Using equation (2), the value of the deviation

parameter Wb at the back surface is given by

Wb ¼
�H

tan �B

þWs; ð8Þ

which satisfies the relation Wb <Ws � �1. The x component

of the propagation length of the X-ray from the incident point

to the back surface is given as

xb ¼
1

j�j

j�jH

tan �B

þ jWsj

� �2

� 1

" #1=2

� ðW2
s � 1Þ

1=2

8<
:

9=
;; ð9Þ

by setting z = H in equation (2). The distance xb decreases

monotonically as a function of jWsj for Ws � �1.

The maximum value of x for observing IFTB is determined

by the exit point of the refracted beam for � = 0 (Ws ¼ �1).

The value ðxmaxÞ is half the maximum value of x for observing

IFRB (2xmax) for � = 0 as depicted in Fig. 2(a). Using equation

(9), the value of xmax is 9.6, 7.9 and 6.8 mm when j�j is 0.02,

0.03 and 0.04 mm�1, respectively. In the experiment, IFTB is

observed up to 8 mm as shown in Fig. 5(a). j�j must be less

than 0.03 mm�1. The uppermost observed point z0 of IFLSD is

given by the exit point of the beam for � = 0 from the lateral

surface. The point z0 is 0.21, 0.11 and 0.055 mm when j�j is

0.02, 0.01 and 0.005 mm�1, respectively. As the measured

value of z0 is around 0.14 mm, j�j must be more than

0.01 mm�1. Then it is reasonable to take the value of j�j as

0.02 mm�1 within the error of �0.01 mm�1. To determine the

value of � from only IFRB, it is necessary to measure the

interference fringes for x more than 17 mm as will be shown

later.
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3.2. Interference fringes between two reflected beams from
the back surface

In Fig. 2(b), as IFRB emitted from A2 are observed in the

range of x from around 5.5 to 8.5 mm, they are attributed to

the interference fringes between the once-reflected beam (S02)

and the twice-reflected beam (S004) from the back surface. The

beam once reflected from the back surface is called the beam

in the BbB mode hereafter, since it is incident on the entrance

surface (A0) satisfying the boundary condition of the Bragg

mode, reflected from the back surface (B1) satisfying that of

the Bragg mode and emitted from the entrance surface (A2)

satisfying that of the Bragg mode. It is possible for these

beams to interfere with the beam in the B5bB mode. But the

amplitude of the beams in the B5bB mode is much smaller

than that in the BbB mode, because the amplitude becomes

small after each reflection from the entrance or the back

surface. In the following, the contribution of the beam in the

B5bB mode is ignored.

The amplitude of the beam in the BbB mode is denoted as

EBbB. Similarly, the amplitude corresponding to the beam

twice reflected from the back surface, i.e. the beam in the

B3bB mode, is denoted as EB3bB. Then the amplitudes of EBbB

and EB3bB from a non-absorbing crystal can be written as

EBbB ¼ R1 exp 2	i�1ð ÞE0; ð10Þ

EB3bB ¼ R2 exp 2	i�2ð ÞE0: ð11Þ

Here E0 is the amplitude of the incident X-ray. �1 and �2 are

the phase factors of EBbB and EB3bB, respectively. The phase

factor �m (m = 1 and 2) is given by

�m ¼
R

kmðrmÞ � drm; ð12Þ

with km being the wavevector and rm the position vector. �m

can be divided into two parts as

�m ¼ �xm þ �zm: ð13Þ

�xm and �zm are obtained from the x and z components of rm.

The details of the calculation of equation (13) were given by

Fukamachi et al. (2010) and Jongsukswat et al. (2012b). In

equations (10) and (11), R1 and R2 are given by

R1 ¼ r1ðWs1Þ
r1 Ws1ð Þ

r2 Wb1ð Þ
� 1

� �
; ð14Þ

R2 ¼
r2

1ðWs2Þ

r2ðWb2Þ

r1 Ws2ð Þ

r2 Wb2ð Þ
� 1

� �
: ð15Þ

The reflection coefficients are given as r1 ¼ D
ð1Þ
h =D

ð1Þ
0 and

r2 ¼ D
ð2Þ
h =D

ð2Þ
0 , with D

ðiÞ
0 and D

ðiÞ
h being the amplitudes of

electric displacement of the ith branch of the transmitted and

diffracted waves, respectively. Ws1 and Ws2 are the deviation

parameters for the beams S1
0 and S1

00 at the entrance surface,

and Wb1 and Wb2 are those at the back surface. The intensity of

IFRB from A2 in Fig. 2(b) is given by

Pr ¼ EBbB þ EB3bB

�� ��2¼ ½R2
1 þ R2

2 þ 2R1R2 cosð2	��Þ�jE0j
2:

ð16Þ

The phase factor �� is given by

�� ¼ ð�x2 � �x1Þ þ ð�z2 � �z1Þ: ð17Þ

4. Discussion

4.1. Comparison between measured and calculated inter-
ference fringes

Intensities of IFRB calculated using equation (16) are

shown in Figs. 6(a), 6(b), 6(c) for � = �0.02, �0.01 and

0.0 mm�1, respectively. The integer value at each peak denotes

the value of �� in equation (17). The distance between two

adjacent peaks increases as the distance x increases or the

value of j�j decreases. The inset of Fig. 6 shows the variations

of IFRB (the solid curve) for � =�0.02 mm�1 in the range of x

between 5.5 and 8.5 mm, which corresponds to the shaded

area in Fig. 6(a). For comparison, the calculated intensity

variation of IFMRB is also shown for � = 0.02 mm�1. The

IFMRB intensities are calculated by assuming the interference

between the mirage diffraction beam S0m1 and the beam S02
reflected from the back surface in Fig. 1(b) and using the

formula given by Jongsukswat et al. (2012b). The number of

interference fringes of IFRB is ten and that of IFMRB is three.

The distance between two adjacent peaks increases as the

distance x increases in both the IFRB and IFMRB. The

calculated results in Fig. 6(a) and the inset agree quite well

with the observed results in Fig. 4 at least qualitatively. Based

on this good agreement the strain gradient parameter of the

present crystal is determined to be � = �0.02 mm�1. In order

to determine the value of � only from IFRB, it is necessary to

measure the interference fringes for x more than 17 mm as the

difference in the period of the fringes becomes conspicuous

for large x as can be seen in Fig. 6. It is possible for the beams
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Figure 6
Calculated intensities of IFRB in the range of x from 5 to 30 mm for �
being (a) �0.02 mm�1, (b) �0.01 mm�1 and (c) 0.0 mm�1. The inset
shows the calculated intensities of IFRB (black curve) for � =
�0.02 mm�1 and IFMRB for � = 0.02 mm�1 (red dashed curve) in the
range of x from 5.5 to 8.5 mm [the shaded region in (a)].



S0m1 and S02 (in the BbB mode) to interfere with the beam in

the B3bB mode to form the IFMRB. However, as described in

Section 3.2, the amplitude of the beam in the B3bB mode is

much smaller than that of the mirage diffraction beam S0m1

because of three more reflections than S0m1.

The calculated intensities of IFTB are shown in Figs. 7(a),

7(b), 7(c) for � = �0.02, �0.01 and 0 mm�1, respectively. The

distance between two adjacent peaks increases as x increases

or j�j decreases. There are five peaks in the shaded range of x

between 5.5 and 8.5 mm in Fig. 7(a), which agrees with the

experimental result that there are five dark lines in Fig. 5(a) in

the same range. The distance between two adjacent peaks in

IFTB for � < 0 in Fig. 5(a) is nearly the same as that for � > 0 in

Fig. 5(b) when j�j is the same. Beam trajectories are sche-

matically shown for � < 0 (the black solid curve) and for � > 0

(the red dashed curve) for the same j�j in Fig. 8. The relations

Wsð�< 0Þ ¼ Wbð�> 0Þ and Wsð�> 0Þ ¼ Wbð�< 0Þ hold and

the path lengths of the two trajectories [from A to A0 for �< 0

(black solid curve) and A0 to A for �> 0 (red dashed curve)]

are the same. The values of �� are the same for these two

trajectories. The number of oscillations of IFTB for �< 0

should be the same as that for �> 0 when j�j is the same.

In Fig. 4 IFLSD are also shown both for � < 0 (a) and � > 0

(b). IFLSD for � < 0 are more clearly observed for small z

than for large z in the upper part of Fig. 4(a). The spacing of

the two adjacent dark lines is approximately 35 mm. When

� > 0, four dark bands are observed between z = 0 and H as

shown in the upper part of Fig. 4(b). The spacing of the two

adjacent bands is approximately 70 mm, which is twice larger

than that in Fig. 4(a). The value of � in Fig. 4(a) is�0.02 mm�1

and the corresponding beam trajectories are depicted in Fig.

9(a). The beam S0 (the broken curve) corresponding to

Ws ¼ �1 reaches the lateral surface directly at z ¼ z0 (’

0.21 mm). No beam in the BL mode comes to the region

between z ¼ 0 and z0 on the lateral surface. The notation L of

BL mode denotes that the beam emitted from the lateral

surface satisfies the boundary condition of the Laue mode.

The observed IFLSD should be formed by interference

between the beam S1 in the BbL mode (black solid curve) and

the beam S2 in the B2bL mode (red solid curve). The beam

trajectories for � = 0.02 mm�1 are depicted in Fig. 9(b). The

beam S0 (thin solid curve) reaches the point (xL, 0) and the

beam SH (the broken curve) reaches the point (xL, H). Here,

xL is the distance from the incident point to the edge of the

crystal surface. If the parameters Ws for S0 and SH are denoted

as W0 and WH , respectively, the beam S1 is in the BL mode

when the parameter W1 (Ws for S1) satisfies the condition

W0 >W1 >WH , and the beam S2 is in the BbL mode when the

parameter W2 (Ws for S2) satisfies W2 <WH. The IFLSD in

Fig. 4(b) is attributed to the interference between the beams in

the BL mode (black solid curve) and in the BbL mode (red

solid curve).

When xL is larger than the crystal thickness (H), the spacing

of two adjacent peaks of IFLSD between the beams in the BL

and the BbL modes �BbL is given by

�BbL ¼
xL tan2 �B

GH
; ð18Þ

for � = 0. Here G is the Bragg gap given by G =

jK0jj�hj= cos �B with jK0j being the wavenumber of the X-ray.

Similarly, the spacing of IFLSD between the beams in the BbL

and the B2bL modes �B2bL is given by

�B2bL ¼
�BbL

2
: ð19Þ

By using equations (18) and (19), �B2bL is calculated to be

31 mm, which agrees quite well with the measured value of

35 mm. The crystal was actually bent and � 6¼ 0 in the present

experiment. But the obtained value of 31 mm cannot be much

different from the actual value, because equation (19) is a

good approximation when j�j is very small and the trajectories

S1 and S2 are almost straight.
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Figure 7
Calculated intensities of IFTB in the range of x from 3 mm to xmax for �
being (a) �0.02 mm�1, (b) �0.01 mm�1 and (c) 0.0 mm�1.

Figure 8
Beam trajectories in a bent plane-parallel crystal for the same j�j. The
black solid curve represents the beam trajectory for � < 0 and the red
dashed curve that for � > 0. O is the vertex of the hyperbola for � < 0 and
O0 that for � > 0.

Figure 9
The calculated trajectories of the beams to form IFLSD and IFLST
for (a) � = �0.02 mm�1 and (b) � = 0.02 mm�1. xL = 8.5 mm and H =
0.28 mm.



By using equations (4) and (5), the values of strain gradient

and strain on the crystal surface (z = 0) are estimated to be "0zz

= 1.9 	 10�6 mm�1 and "zz = �2.7 	 10�7, when the value of

j�j is 0.02 mm�1. This value is consistent with the previous

result by Jongsukswat et al. (2012b). If we assume that the

strain is only due to gravity, the value of j�j at the distance l

between 3.25 and 4 mm is 9.35	 10�4 mm�1 using the Young’s

modulus (105–185 GPa) and Poisson’s ratio (0.17–0.33) of Si.

This is approximately 5% of the measured value. On the other

hand, the value of j�j due to the residual strain by Jong-

sukswat et al. (2013) is 82.3 	 10�4 mm�1, which is approxi-

mately half but close to the current measured value. By

considering that residual strain varies depending on the shape,

processing, use history and so on, the measured strain should

be attributed to mostly residual strain and partly (5%) to

strain due to gravity.

4.2. Angular amplification of IFRB for b < 0

The angular amplification rate ��/��, which is defined as

the ratio of the divergence angle of the refracted beam �� to

that of the incident wave ��, has been analytically derived by

Authier (2001) in the Laue geometry for a non-absorbing

crystal. The rate is much larger at the centre (W ’ 0) of the

reflection region than at the edges (jWj ’ 1). In the symmetric

Bragg geometry, the relation between W and � is given by

tan � ¼
ðW2 � 1Þ1=2

jWj
tan �B; ð20Þ

where � is the angle of the refracted-beam (the Poynting

vector) direction from the direction parallel to the surface.

The value of � is 0 for jWj ¼ 1 and increases as jWj increases.

It is close to �B for jWj 
 1. The angular amplification in the

symmetric Bragg geometry AB can be written as

AB ¼
��

��

����
���� ¼ Amax

L

cos2 �B

ðW2 � sin2 �BÞðW
2 � 1Þ1=2

; ð21Þ

for jWj> 1. Here Amax
L is the maximum angular amplification

in the symmetric Laue geometry given by

Amax
L ¼

2 sin2 �B

�h

�� �� : ð22Þ

For Si(220), the value of Amax
L is 3.5 	 104. In the Bragg

geometry, AB increases as �W approaches zero, and it is

infinite at �W ¼ 0, where �W is defined by W ¼ �ð1þ�WÞ.

Fig. 10 shows values of AB as a function of �W. When �W is

10�3, AB is 7.8 	 105 and 22 times larger than Amax
L . In IFMD

for �> 0, the typical value of �W corresponding to the first

peak (�� ¼ 0:5) is of the order of 10�1. On the other hand, in

IFRB for �< 0;�W corresponding to the sixth peak (�� ¼ 6)

in Fig. 6(a) is of the order of 10�5. In order to obtain a high

angular amplification rate, it is better to use the interference

fringes for �< 0.

4.3. Coherent condition and energy width of IFRB

In the present optical system in Fig. 3(a), the divergent

angle of the X-rays is estimated to be 670 nrad, as the distance

from the source to the slit is 30 m and that from the slit to the

sample is 300 mm. The X-ray enters the sample crystal after

being reflected from the double-crystal monochromator and

passing through the slit. The source size of the X-ray is 60 mm

and larger than the width of slit 1 (20 mm). In order to discuss

the coherence in this case, the effective coherence length and

the source size are evaluated using the optical system in Fig.

11. At the incident point (A0) of the X-ray, the beams in the

BbB (solid line) and B3bB modes enter the crystal with the

glancing angles �EðBbBÞ and �EðB3bBÞ. The angle �E is the

glancing angle of incidence for the X-ray with an energy

spread of 
E and � is the glancing angle for the monochro-

matic X-ray. In other words, �E is the angle in the energy-

dispersive mode and � is that in the rotating-crystal mode. In

the experiment, the incident glancing angle (�) is fixed and the

X-ray from the bending magnet is a wave having an energy

spread of 
E and the corresponding deviation of wavenumber

j
KEj. The divergent angle of the X-ray at the incident point

on the crystal surface is related to the energy width 
E, as

discussed by Fukamachi et al. (2014, 2015). The deviations 
E
and j
KEj are related to the deviation of the Bragg angle 
�B in

the crystal as
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Figure 10
The angular amplification rate (AB) as a function of �W for the Si(220)
reflection in the Bragg mode. The solid line shows the value of AB in
equation (21) and the dashed line shows the value of Amax

L .

Figure 11
The optical system for evaluating the effective source size and the
effective divergent angle for forming IFRB between the beams in the
BbB and B3bB modes. By tracing the beam in the BbB mode incident on
the sample at x with the glancing angle �BbB back to the source, it arrives
at point a in the plane of the source. In a similar way the beam in the
B3bB modes arrives at point b. The length between the points a and b
gives the effective source size for forming the IFRB at x. The effective
divergent angle ��B is given by �BbB � �B3bB.



j
Ej

E
¼

KE

K0

����
���� ¼ 
�B

tan �B

: ð23Þ

The divergent angle of the incident X-ray corresponds to the

deviation of the Bragg angle 
�B. For relating 
�B to 
�, Fig. 12

shows the dispersion surfaces for the incident wavevectors K0

and K0+
KE with the glancing angle � and the diffraction

geometry. For simplicity, the glancing angle � is assumed to be

the same as �B. The dispersion surfaces and the diffraction

geometry in the more general case are given by Fukamachi et

al. (2014, 2015). The vector OH
	!

is the reciprocal-lattice vector

h and Kh the wavevector of the diffracted wave. The lines T00
and T000 represent the dispersion surfaces for the wavevectors

K0 and K0+
KE, respectively. La and L0a are the corresponding

Laue points and the distance LaL0a is given by |
KE|/cos �B. To

obtain the same variation of LaL0a by changing the incident

angle � (
�), the component of the wavevector 
K� parallel to

the lattice plane ðj
K�jsin�BÞmust be LaL0a. Then the relations

j
K�j sin �B ¼ jK0j
� sin �B ¼ |
KE|/cos �B hold. Using these

relations and equation (23), 
�B is related to 
� as


�B

�� �� ¼ sin2 �B 
�j j: ð24Þ

The energy deviation is related to 
W as

j
Ej

E
¼
j�hj

2
j
Wj ð25Þ

by using the relation


W ¼
sin 2�B

�h

�� �� 
�
obtained from equation (1) by setting C = 1. The effective

angle divergence 
�B of the incident beam is related to 
W as


W ¼
2

j�hj tan �B


�B: ð26Þ

The divergent angle of the beam from a point source corre-

sponds to the deviation of 
�E and the deviation of the Bragg

angle 
�B in the present experiment, which gives rise to the

deviation of j
Wj ¼ 0:90 for the Si(220) reflection.

In order to compare the range of j
Wj with that needed to

excite the refracted beams in the BbB and B3bB modes

coherently, the values of �WBbB and �WB3bB for the beams in

the BbB mode and the B3bB mode are determined by using

equation (2) and � = �0.02 mm�1. Here �WBbB and �WB3bB

are �W for the beams in BbB mode and B3bB mode,

respectively. The values of �WBbB and �WB3bB for x from 5 to

9 mm are listed in the second and third columns, respectively,

in Table 1. The range of |
W| = j�WBbB ��WB3bBj for exciting

the IFRB in the range of x from 5 to 9 mm is 0.46 and smaller

than j
Wj ¼ 0:90. The incident X-ray with the divergent angle

of 670 nrad is enough to excite the relevant refracted beams in

the BbB and B3bB modes coherently.

Next, the longitudinal coherent condition is discussed. In

the present experiment, the values of � and the path lengths

are different for the beams in the BbB and B3bB modes as

shown in Fig. 2(b). The value of �BbB (�B3bB) is obtained by

putting the value of WBbB (WB3bB) into equation (20). The path

length of the beam in the BbB (B3bB) mode is calculated

using the values of �BbB (�B3bB) by assuming that the beam

trajectory is straight, because the hyperbolic curvature is

small. The path length differences �lp thus calculated from the

path lengths of these two beams are listed in the last column of

Table 1. As the longitudinal coherence length lL (Born & Wolf,

1970) is given by

lL ¼
�

2

E


E

� �
; ð27Þ

the value is obtained by inserting equation (25) into equation

(27) and using j
Wj. The longitudinal coherence length lL for

these beams is listed in the seventh column of Table 1. At x =

8 mm, the path length difference is 58 mm and the coherence

length is 204 mm. The coherence length is larger than the path

length difference, and the coherence condition is satisfied. On
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Table 1
The deviation parameters �WBbB and �WB3bB for the beams in the BbB
and the B3bB modes at position x from 5 to 9 mm in Fig. 4(a) (in the
second and the third columns, respectively).

The corresponding effective divergent angle ��B, source size lef, energy width

E and longitudinal coherence length lL for formation of the IFRB between
these two beams are in the fourth to the seventh columns. �lp in the last
column is the path length difference between these two beams.

x
(mm) �WBbB �WB3bB

��B

(nrad)
lef

(mm)

E
(meV)

lL
(mm)

�lp
(mm)

5 0.07 0.47 300 9 10.8 51 93
6 0.04 0.26 166 5 6 92 78
7 0.03 0.17 105 3.1 3.8 146 67
8 0.02 0.12 75 2.3 2.7 204 58
9 0.01 0.09 60 1.8 2.2 255 52

Figure 12
Dispersion surfaces and diffraction geometry in the vacuum. The glancing
angle � is taken to be the same as the Bragg angle �B, for simplicity. T00
and T0 00 represent the dispersion surface for the beam with K0 and
that with K0 þ 
KE, respectively. T 0h represents the dispersion surface
for the beam Kh. LaO, L0aO and AO represent the vectors K0,
K0 þ 
ðKEÞ=== cos �B and K0 þ 
K�, where 
ðKEÞ== is the component
vector of 
KE parallel to the lattice plane.



the other hand, the coherence condition is not fully satisfied at

x = 5 mm, as the coherence length is 51 mm and the path length

difference is 93 mm. The interference fringe is blurred around

x = 5 mm in Fig. 4(a).

The transverse coherence length lT is given by

lT ¼
�

2��B

; ð28Þ

where ��B = �B3bB � �BbB with �BbB and �B3bB being the Bragg

angles for the beams in the BbB and B3bB modes, respec-

tively. The transverse coherence length lT in the present

experiment is 186 mm. The effective source size (lef) is given by

the product of ��B with the distance from the source point to

the sample (approximately 30 m). The calculated values of

��B and lef are listed in the fourth and fifth columns, respec-

tively, of Table 1. As the maximum effective source size is lef =

9 mm for the formation of IFRB at x = 5 mm, the coherence

condition is satisfied.

In the observation of IFRB, there is another possible blur-

ring effect caused by the different travelling directions

between the beams in the BbB and the B3bB modes. The

difference in the directions of these two beams is approxi-

mately 300 nrad. As the distance from the sample to the

nuclear plate is 100 mm, the resultant difference in the

arriving positions on the plate is 30 nm. This difference is

much smaller than a period of the IFTB of 0.3 mm and the

blurring effect is negligible. A similar blurring effect is

expected in the observation of IFMRB and IFTB. This is also

negligible in the present setup.

5. Summary

The trajectory of the X-ray refracted beam in a very weakly

bent perfect crystal with negative strain gradient shows a

hyperbolic form opening down, while it shows a hyperbolic

form opening up when the strain gradient is positive. This

difference in beam trajectory results in quite different X-ray

interference fringes. The interference fringes for � < 0 were

mainly studied in the above. In the wave emitted from the

entrance surface IFRB were observed between once- and

twice-reflected beams from the back surface. In the trans-

mitted wave from the back surface, IFTB were observed

between the beam directly reaching the back surface and the

beam once reflected from the entrance surface. These inter-

ference fringes for � < 0 were compared with the corre-

sponding interference fringes for � > 0. IFRB and IFTB were

analysed by using the dynamical theory of diffraction for a

bent crystal. The results showed very good agreement between

the observed and the calculated values of the interference

fringe spacing, which enabled us to evaluate the strain

gradient of the sample crystal. If a thinner crystal is used when

� � 0, it is possible to observe Bragg–Pendellösung fringes

reported by Batterman & Hildebrandt (1968), which are

formed by interference between two waves corresponding to

the two branches of the dispersion surface as shown by

Authier (2008). But if �> 0, it is not possible to observe them

because of the mirage effect.

The fringe spacing of IFRB for � < 0 is smaller than that of

IFMRB for � > 0. It is noted that IFRB for � < 0 should be

potentially useful for measuring a very weak strain of the

order of 10�7.
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