Structure of intermediates of the water oxidation reaction in photosystem II

L. Lassalle¹, J. Kern¹, M. Ibrahim², K. D. Sutherlin¹, I.D. Young¹, R. Chatterjee¹, S. Gul¹, F. Fuller³, R. Hussein², A. S. Brewster¹, A. Bhowmick¹, N. K. Sauter¹, A. Zouni², J. Messinger^{4,5}, V. K. Yachandra¹, J. Yano¹

¹Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

²Institut für Biologie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany.

³LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.

⁴Institutionen för Kemi, Kemiskt Biologiskt Centrum, Umeå Universitet, SE 90187 Umeå, Sweden.

⁵Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 75237 Uppsala, Sweden.

Email Contact: llassalle@lbl.gov

Photosystem II (PSII) catalyzes the light driven oxidation of water into dioxygen, protons and electrons. This reaction takes place at the oxygen evolving complex (OEC) a Mn_4CaO_5 cluster, through five intermediate S-states (S₀ to S₄), S₁ being the dark-stable state and S₃ the highest oxidized semi-stable state before O-O bond formation and O₂ evolution. We have been using fs X-ray pulses from an X-ray free electron laser (XFEL) to study the geometric and electronic structure of the OEC over the reaction cycle and recently reported high-resolution (around 2 Å) structures of PSII at room temperature for the four stable states in the S-state cycle as well as for two time points in the S₂-S₃ transition.

Our results reveal important structural changes including the binding of one additional 'water', Ox, during the $S_2 \rightarrow S_3$ state transition. The binding of the additional oxygen Ox in the S_3 state between Ca and Mn1 suggests O-O bond formation mechanisms involving O5 as one substrate, where Ox is either the other substrate oxygen or is perfectly positioned to refill the O5 position during O₂ release [1].

We also explored the extended network of H-bonds between amino acid residues and waters connecting the OEC to the bulk solvent. We observed several significant changes in this network during the S-state cycle. Based on these data we will discuss the dynamics of the catalytic site and its environment over the reaction cycle.

Reference 1. Kern J, et al. (2018) *Nature* **563**, 421