Selective solvent capture by molecular assemblies of diosmium sawhorses

Gregory L. Powell and Cynthia B. Powell

Department of Chemistry \& Biochemistry, Abilene Christian University, ACU Box 28132, Abilene, Texas 79699-8132, USA, powellg@acu.edu

At high temperatures, $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ reacts with monocarboxylic acids to form the diosmium(I) compounds $\mathrm{Os}_{2}(\mu \text {-carboxylate })_{2}(\mathrm{CO})_{6}$ known as sawhorse complexes in which four CO ligands form legs that extend from the osmium-osmium vector that represents the top of the sawhorse [1,2]. Dicarboxylic acids have also been used to prepare compounds in which dicarboxylate (DCA) anions bridge several diosmium sawhorses, including tetranuclear $\left[\mathrm{Os}_{2}(\mathrm{CO})_{6}\right]_{2}(\mu-$ $\mathrm{DCA})_{2}(\mathrm{CO})_{6}$ complexes with two Os_{2} sawhorse units linked together into a single molecular loop and hexanuclear $\left[\mathrm{Os}_{2}(\mathrm{CO})_{6}\right]_{3}(\mu-\mathrm{DCA})_{3}$ complexes with three Os_{2} sawhorse units linked together in a triangular geometry [3].

We have recently been able to use 2,6-naphthalenedicarboxylic acid to provide a larger DCA anion that allowed for the isolation of the first example of an octanuclear osmium complex with four Os_{2} sawhorse units linked together to form a molecular square of the type $\left[\mathrm{Os}_{2}(\mathrm{CO})_{6}\right]_{4}(\mu$ DCA) $)_{4}$ (Fig. 1a). Using benzene-1,3,5-tricarboxylic acid ($\mathrm{H}_{3} \mathrm{BTC}$), we have also synthesized the first dodecanuclear osmium complex with six Os_{2} sawhorse units linked together to form a molecular octahedron with the formula $\left[\mathrm{Os}_{2}(\mathrm{CO})_{6}\right]_{6}(\mu-\mathrm{BTC})_{3}$ (Fig. 1b). The X-ray crystal structures and solvent-capturing propensities of these new MOF-like complexes will be discussed. Dichloromethane molecules occupy the centers of the Os_{12} octahedra, while hexane molecules occupy the large intermolecular voids. Dichloromethane molecules also fill the centers of the Os_{6} triangles, but not the Os_{8} squares.

Fig. 1. The core portions of (a) the $\left[\mathrm{Os}_{2}(\mathrm{CO})_{6}\right]_{4}(\mu-\mathrm{DCA})_{4}$ molecular square and (b) the $\left[\mathrm{Os}_{2}(\mathrm{CO})_{6}\right]_{6}(\mu-\mathrm{BTC})_{3}$ molecular octahedron.

References
[1] Crooks, G. R., Johnson, B. F. G., Lewis, J., Williams, I. G. \& Gamlen, G. (1969). J. Chem. Soc. A, 2761-2766.
[2] Pyper, K. J., Jung, J. Y., Newton, B. S., Nesterov, V. N. \& Powell, G. L. (2013). J. Organomet. Chem. 723, 103-107.
[3] Gwini, N., Marolf, D. M., Yoon, S. H., Fikes, A. G., Dugan, A. C., Powell, G. L., Lynch, V. M., Nesterov, V. N. \& McCandless, G. T. (2017). J. Organomet. Chem. 849-850, 324-331.

