Crystal Chemistry, Phase Diagrams, and Thermoelectric Properties of the Ca-M-Co-O (M=Sr, Zn, La, Sm, Eu, Gd, and Dy) Systems

¹<u>W. Wong-Ng</u>, ¹W. Laws, ²S. Lapidus, ¹J. Martin, and ³J. A. Kaduk. ¹Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899; ²Advanced Photon Source, Argonne National laboratory, Argonne, IL 60439; ³Illinois Institute of Technology, Chicago, IL 60616. Email Contact: winnie.wong-ng@nist.gov

For waste heat energy conversion applications, oxide materials which have high temperature stability are potential candidate materials. In the Ca-M-Co-O (M=Sr, Zn, La, Eu, Sm, Gd, and Dy) systems, in addition to the well-known Ca₃Co₄O₉ phase (with misfit layered structure) that has excellent thermoelectric properties, and the M-doped phases (Ca,M)₃Co₄O₉ or Ca₃(Co,M)₄O₉ phases, other low-dimensional phases include the homologous series, $A_{n+2}Co_nCo'O_{3n+3}$ (where A= (Ca, Sr) and (Sr,Ca)), $Ca_{n+2}(Co,Zn)_n(Co',Zn)O_{3n+3}$, and (M_{1+x}Ca_{1-x})CoO_{4-z}. While the members of the A_{n+2}Co_nCo'O_{3n+3} series have reasonably high Seebeck coefficients and relatively low thermal conductivity, the electrical conductivity needs to be increased in order to achieve higher figure of merit (*ZT*) values. This talk discusses our phase equilibria/structural/property studies of selected cobaltates in the Ca-M-Co-O systems.