Local environment and structure of ϵ -VOPO₄ cycled with graphene

Kamila M. Wiaderek¹, Carrie Siu², Ieuan D. Seymour³, Sylvia Britto³, Natasha A. Chernova², ¹ X-ray Science Division, Advanced Photo Source, Argonne National Laboratory, Argonne, II 60439 ² NorthEast Center for Chemical Energy Storage (NECCES) at Binghamton University in Binghamton, NY, 13902, USA.

³ Department of Chemistry at University of Cambridge, Cambridge, UK Email Contact: kwiaderek@anl.gov

In the quest to improve electrochemical performance of energy storage materials, a potential avenue to increase the energy density of Li-ion batteries is the use of cathode materials that are capable of intercalating more than 1 Li+ per redox center in a fully reversible fashion. One group of compounds that exhibit these desirable characteristics are vanadyl phosphates.

The vanadate phosphate (VOPO4) compounds are a class of multi-electron materials that have been demonstrated to successfully utilize multiple redox couples (V3+ \leftrightarrow V4+ \leftrightarrow V5+.) To enable fully reversible intercalation of two Li ions and reach the theoretical capacity of 305 mAh/g sample morphology and particle size has to be closely controlled. In addition, electrochemical efficiency is highly dependent on type of carbon used to prepare electrode – the reason yet not understood.

Here, we presents results of a multifaceted investigation into the local structural ordering of vanadate phosphate compounds, that enables reversible cycling over the 2-lithium range, employing X-ray powder diffraction, pair distribution function (PDF) analyses and NMR measurements.