MS14-P20 MODULAR STRUCTURES OF LAYERED URANYL MINERALS AND SYNTHETIC

COMPOUNDS

Nazarchuk, Evgeny (Saint-Petersburg State University, Saint-Petersburg, RUS)

There are many ways to describe topology of polyhedral complexes in the structures of uranyl compounds, one of them is a modular approach. The $[(UO_2)(T^{6+}O_4)(H_2O)_n]^0$ ($T = Cr^{6+}$, S^{6+} , Se^{6+} , n = 0-2) chains are the building block for a numbers of layers. Uranium compounds obtained from aqueous solutions often inherit fundamental building blocks. The layers in the structures of uranyl selenates can be obtained by the self-assembly of the $[(UO_2)_2(SeO_4)_4(H_2O)_4]^{4-}$ complexes. This approach will be generalized for all layered uranyl compounds with TO_4 (S^{6+} , Se^{6+} , Cr^{6+} , Mo^{6+} , P^{6+} , As^{6+}) tetrahedra in this contribution.

Tetramers $[(UO_2)_2(TO_4)_4(\phi)_4]^{4-}$ ($\phi = O, H_2O, F, CI, OH$) in uranyl compounds are binding by free vertexes of TO_4 tetrahedra to form three types of fundamental chains. Chains connected by vertex of uranium and TO_4 polyhedral form layers with different $UO_2:TO_4 = 1:2, 2:3, 3:5, 4:7, 5:8$ ratios. Thus, the layers are modular units built from separate chains.

This work was financially supported by the Russian Science Foundation through the grant 16-17-10085 and internal travel grant of SPbSU.